Suppr超能文献

氯霉素和恶唑烷酮类抗生素对线粒体核糖体的特异性抑制作用。

Context-specific inhibition of mitochondrial ribosomes by phenicol and oxazolidinone antibiotics.

作者信息

Bibel Brianna, Raskar Tushar, Couvillion Mary, Lee Muhoon, Kleinman Jordan I, Takeuchi-Tomita Nono, Churchman L Stirling, Fraser James S, Fujimori Danica Galonić

机构信息

Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.

出版信息

bioRxiv. 2024 Aug 21:2024.08.21.609012. doi: 10.1101/2024.08.21.609012.

Abstract

The antibiotics chloramphenicol (CHL) and oxazolidinones including linezolid (LZD) are known to inhibit mitochondrial translation. This can result in serious, potentially deadly, side effects when used therapeutically. Although the mechanism by which CHL and LZD inhibit bacterial ribosomes has been elucidated in detail, their mechanism of action against mitochondrial ribosomes has yet to be explored. CHL and oxazolidinones bind to the ribosomal peptidyl transfer center (PTC) of the bacterial ribosome and prevent incorporation of incoming amino acids under specific sequence contexts, causing ribosomes to stall only at certain sequences. Through mitoribosome profiling, we show that inhibition of mitochondrial ribosomes is similarly context-specific - CHL and LZD lead to mitoribosome stalling primarily when there is an alanine, serine, or threonine in the penultimate position of the nascent peptide chain. We further validate context-specific stalling through in vitro translation assays. A high resolution cryo-EM structure of LZD bound to the PTC of the human mitoribosome shows extensive similarity to the mode of bacterial inhibition and also suggests potential avenues for altering selectivity. Our findings could help inform the rational development of future, less mitotoxic, antibiotics, which are critically needed in the current era of increasing antimicrobial resistance.

摘要

已知抗生素氯霉素(CHL)和恶唑烷酮类药物包括利奈唑胺(LZD)可抑制线粒体翻译。在治疗中使用时,这可能导致严重的、潜在致命的副作用。尽管CHL和LZD抑制细菌核糖体的机制已得到详细阐明,但其针对线粒体核糖体的作用机制尚未得到探索。CHL和恶唑烷酮类药物与细菌核糖体的核糖体肽基转移中心(PTC)结合,并在特定序列背景下阻止进入的氨基酸掺入,导致核糖体仅在某些序列处停滞。通过线粒体核糖体分析,我们表明线粒体核糖体的抑制同样具有序列背景特异性——CHL和LZD主要在新生肽链的倒数第二个位置存在丙氨酸、丝氨酸或苏氨酸时导致线粒体核糖体停滞。我们通过体外翻译试验进一步验证了序列背景特异性停滞。与人类线粒体核糖体PTC结合的LZD的高分辨率冷冻电镜结构显示出与细菌抑制模式有广泛的相似性,也提示了改变选择性的潜在途径。我们的研究结果有助于为未来毒性较小的抗生素的合理开发提供信息,在当前抗菌药物耐药性不断增加的时代,这是迫切需要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e97/11370408/1fc7bff6b4e0/nihpp-2024.08.21.609012v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验