Suppr超能文献

使用微流控技术对基于细胞器的 RNA/蛋白质液相对生物物理特性的分析。

Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics.

机构信息

Department of Chemical and Biological Engineering, Princeton University, USA.

Department of Mechanical and Aerospace Engineering, Princeton University, USA.

出版信息

Soft Matter. 2016 Nov 16;12(45):9142-9150. doi: 10.1039/c6sm01087c.

Abstract

Living cells contain numerous membrane-less RNA/protein (RNP) bodies that assemble by intracellular liquid-liquid phase separation. The properties of these condensed phase droplets are increasingly recognized as important in their physiological function within living cells, and also through the link to protein aggregation pathologies. However, techniques such as droplet coalescence analysis or standard microrheology do not always enable robust property measurements of model RNA/protein droplets in vitro. Here, we introduce a microfluidic platform that drives protein droplets into a single large phase, which facilitates viscosity measurements using passive microrheology and/or active two-phase flow analysis. We use this technique to study various phase separating proteins from structures including P granules, nucleoli, and Whi3 droplets. In each case, droplets exhibit simple liquid behavior, with shear rate-independent viscosities, over observed timescales. Interestingly, we find that a reported order of magnitude difference between the timescale of Whi3 and LAF-1 droplet coalescence is driven by large differences in surface tension rather than viscosity, with implications for droplet assembly and function. The ability to simultaneously perform active and passive microrheological measurements enables studying the impact of ATP-dependent biological activity on RNP droplets, which is a key area for future research.

摘要

活细胞内含有许多通过细胞内液-液相分离组装而成的无膜 RNA/蛋白质 (RNP) 体。这些凝聚相液滴的特性在其在活细胞内的生理功能中以及与蛋白质聚集病理的联系中越来越受到重视。然而,诸如液滴聚结分析或标准微流变学等技术并不总是能够对体外模型 RNA/蛋白质液滴进行稳健的特性测量。在这里,我们引入了一种微流控平台,该平台将蛋白质液滴驱动到单个大相中,从而便于使用被动微流变学和/或主动两相流分析进行粘度测量。我们使用该技术研究了来自 P 颗粒、核仁、Whi3 液滴等结构的各种相分离蛋白。在每种情况下,液滴表现出简单的液体行为,在观察到的时间尺度内具有剪切率无关的粘度。有趣的是,我们发现 Whi3 和 LAF-1 液滴聚结时间尺度之间报告的数量级差异是由表面张力而不是粘度的巨大差异驱动的,这对液滴组装和功能有影响。同时进行主动和被动微流变学测量的能力能够研究 ATP 依赖性生物活性对 RNP 液滴的影响,这是未来研究的一个关键领域。

相似文献

1
Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics.
Soft Matter. 2016 Nov 16;12(45):9142-9150. doi: 10.1039/c6sm01087c.
2
The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94. doi: 10.1073/pnas.1504822112. Epub 2015 May 26.
3
Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118823. doi: 10.1016/j.bbamcr.2020.118823. Epub 2020 Aug 13.
4
Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
Mol Cell. 2015 Oct 15;60(2):208-19. doi: 10.1016/j.molcel.2015.08.018. Epub 2015 Sep 24.
5
Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics.
Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202203928. doi: 10.1002/anie.202203928. Epub 2022 Jun 24.
6
Reentrant Phase Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets.
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11354-11359. doi: 10.1002/anie.201703191. Epub 2017 Jun 27.
7
Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets.
Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14489-14494. doi: 10.1002/anie.201907278. Epub 2019 Sep 3.
8
Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence.
Adv Colloid Interface Sci. 2022 Jan;299:102541. doi: 10.1016/j.cis.2021.102541. Epub 2021 Oct 5.
10
Active coacervate droplets as a model for membraneless organelles and protocells.
Nat Commun. 2020 Oct 14;11(1):5167. doi: 10.1038/s41467-020-18815-9.

引用本文的文献

1
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
2
Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein.
Sci Adv. 2025 Apr 18;11(16):eads7627. doi: 10.1126/sciadv.ads7627.
4
Viscoelasticity of globular protein-based biomolecular condensates.
Chem Sci. 2024 Nov 15;15(47):19795-19804. doi: 10.1039/d4sc03564j. eCollection 2024 Dec 4.
5
Direct computations of viscoelastic moduli of biomolecular condensates.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0223001.
6
Fundamental Aspects of Phase-Separated Biomolecular Condensates.
Chem Rev. 2024 Jul 10;124(13):8550-8595. doi: 10.1021/acs.chemrev.4c00138. Epub 2024 Jun 17.
7
Biomolecular condensates form spatially inhomogeneous network fluids.
Nat Commun. 2024 Apr 22;15(1):3413. doi: 10.1038/s41467-024-47602-z.
8
Liquid spherical shells are a non-equilibrium steady state of active droplets.
Nat Commun. 2023 Oct 17;14(1):6552. doi: 10.1038/s41467-023-42344-w.
9
Surface tension measurement and calculation of model biomolecular condensates.
Soft Matter. 2023 Nov 22;19(45):8706-8716. doi: 10.1039/d3sm00820g.
10
A calibration-free model of micropipette aspiration for measuring properties of protein condensates.
Biophys J. 2024 Jun 4;123(11):1393-1403. doi: 10.1016/j.bpj.2023.09.018. Epub 2023 Oct 2.

本文引用的文献

1
Coexisting Liquid Phases Underlie Nucleolar Subcompartments.
Cell. 2016 Jun 16;165(7):1686-1697. doi: 10.1016/j.cell.2016.04.047. Epub 2016 May 19.
2
Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.
Nat Chem. 2016 Feb;8(2):129-37. doi: 10.1038/nchem.2414. Epub 2015 Dec 21.
4
RNA Controls PolyQ Protein Phase Transitions.
Mol Cell. 2015 Oct 15;60(2):220-30. doi: 10.1016/j.molcel.2015.09.017.
5
It's Raining Liquids: RNA Tunes Viscoelasticity and Dynamics of Membraneless Organelles.
Mol Cell. 2015 Oct 15;60(2):189-92. doi: 10.1016/j.molcel.2015.10.006.
6
Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
Mol Cell. 2015 Oct 15;60(2):208-19. doi: 10.1016/j.molcel.2015.08.018. Epub 2015 Sep 24.
8
RNA transcription modulates phase transition-driven nuclear body assembly.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5237-45. doi: 10.1073/pnas.1509317112. Epub 2015 Sep 8.
9
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation.
Cell. 2015 Aug 27;162(5):1066-77. doi: 10.1016/j.cell.2015.07.047.
10
Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles.
J Cell Biol. 2015 Aug 17;210(4):529-39. doi: 10.1083/jcb.201504117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验