Suppr超能文献

无校准微管吸吮模型用于测量蛋白质凝聚物的性质。

A calibration-free model of micropipette aspiration for measuring properties of protein condensates.

机构信息

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey.

出版信息

Biophys J. 2024 Jun 4;123(11):1393-1403. doi: 10.1016/j.bpj.2023.09.018. Epub 2023 Oct 2.

Abstract

There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration parameter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.

摘要

越来越多的证据表明,生物凝聚物(也称为无膜细胞器)和液-液相分离在调节许多重要的细胞过程中起着关键作用。要了解这些凝聚物在生物学中的作用,就必须了解这些复杂物质的材料特性。最近,微量吸管抽吸(MPA)已被提议作为一种测定凝聚物粘度和表面张力的工具。与许多其他只能提供一个或一个参数比的技术相比,该工具允许在一个相对简单的实验中测量这两种材料特性。虽然这项技术在文献中已经被广泛用于确定几十年来具有膜结合物体的材料特性,但描述具有外部膜的物体的 MPA 动力学的模型并不能正确捕获无界流体的流体动力学,导致校准参数比预测值大几个数量级。在这项工作中,我们推导出了一个新的生物凝聚物 MPA 模型,该模型不需要任何校准,并且与 MPA 几何形状的流体动力学一致。我们通过对具有已知材料特性的标准硅油进行 MPA 实验来验证该模型的预测,并且能够使用 MPA 来预测粘度和表面张力。最后,我们使用这个新模型重新分析了之前关于 LAF-1 RGG 结构域形成的凝聚物的 MPA 数据。

相似文献

1
A calibration-free model of micropipette aspiration for measuring properties of protein condensates.
Biophys J. 2024 Jun 4;123(11):1393-1403. doi: 10.1016/j.bpj.2023.09.018. Epub 2023 Oct 2.
2
Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
Biophys Rep (N Y). 2021 Sep 8;1(1). doi: 10.1016/j.bpr.2021.100011. Epub 2021 Aug 11.
3
Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID.
Biophys J. 2024 Oct 1;123(19):3366-3374. doi: 10.1016/j.bpj.2024.07.043. Epub 2024 Aug 8.
4
Material properties of biomolecular condensates emerge from nanoscale dynamics.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2424135122. doi: 10.1073/pnas.2424135122. Epub 2025 Jun 2.
5
Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2109967118.
6
Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein.
Sci Adv. 2025 Apr 18;11(16):eads7627. doi: 10.1126/sciadv.ads7627.
9
Surface tension measurement and calculation of model biomolecular condensates.
Soft Matter. 2023 Nov 22;19(45):8706-8716. doi: 10.1039/d3sm00820g.
10
Proximity to criticality predicts surface properties of biomolecular condensates.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2220014120. doi: 10.1073/pnas.2220014120. Epub 2023 May 30.

引用本文的文献

1
Amphiphilic Protein Surfactants Reduce the Interfacial Tension of Biomolecular Condensates.
Langmuir. 2025 Sep 9;41(35):23827-23836. doi: 10.1021/acs.langmuir.5c03118. Epub 2025 Aug 27.
3
Current practices in the study of biomolecular condensates: a community comment.
Nat Commun. 2025 Aug 19;16(1):7730. doi: 10.1038/s41467-025-62055-8.
4
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
5
Amphiphilic protein surfactants reduce the interfacial tension of biomolecular condensates.
bioRxiv. 2025 Jun 21:2025.06.19.660548. doi: 10.1101/2025.06.19.660548.
6
Micropipette aspiration reveals differential RNA-dependent viscoelasticity of nucleolar subcompartments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2407423122. doi: 10.1073/pnas.2407423122. Epub 2025 May 28.
7
Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein.
Sci Adv. 2025 Apr 18;11(16):eads7627. doi: 10.1126/sciadv.ads7627.
8
The mechanobiology of biomolecular condensates.
Biophys Rev (Melville). 2025 Mar 25;6(1):011310. doi: 10.1063/5.0236610. eCollection 2025 Mar.
10
Fundamental Aspects of Phase-Separated Biomolecular Condensates.
Chem Rev. 2024 Jul 10;124(13):8550-8595. doi: 10.1021/acs.chemrev.4c00138. Epub 2024 Jun 17.

本文引用的文献

1
The liquid-to-solid transition of FUS is promoted by the condensate surface.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2301366120. doi: 10.1073/pnas.2301366120. Epub 2023 Aug 7.
3
Active microrheology of protein condensates using colloidal probe-AFM.
J Colloid Interface Sci. 2023 Feb 15;632(Pt B):357-366. doi: 10.1016/j.jcis.2022.11.071. Epub 2022 Nov 17.
4
Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
Biophys Rep (N Y). 2021 Sep 8;1(1). doi: 10.1016/j.bpr.2021.100011. Epub 2021 Aug 11.
6
Capillary forces generated by biomolecular condensates.
Nature. 2022 Sep;609(7926):255-264. doi: 10.1038/s41586-022-05138-6. Epub 2022 Sep 7.
7
Modulating biomolecular condensates: a novel approach to drug discovery.
Nat Rev Drug Discov. 2022 Nov;21(11):841-862. doi: 10.1038/s41573-022-00505-4. Epub 2022 Aug 16.
8
Essence determines phenomenon: Assaying the material properties of biological condensates.
J Biol Chem. 2022 Apr;298(4):101782. doi: 10.1016/j.jbc.2022.101782. Epub 2022 Mar 2.
9
A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches.
Nat Phys. 2021 Apr;17(4):493-498. doi: 10.1038/s41567-020-01141-8. Epub 2021 Jan 28.
10
Shape recovery of deformed biomolecular droplets: Dependence on condensate viscoelasticity.
J Chem Phys. 2021 Oct 14;155(14):145102. doi: 10.1063/5.0064247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验