Varlet-Marie Emmanuelle, Joré Céline, Brun Jean-Frédéric
Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France.
Laboratoire de Biophysique & Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France.
Clin Hemorheol Microcirc. 2016;64(4):603-611. doi: 10.3233/CH-168041.
Bioelectrical impedancemetry (BIA) has been used to evaluate hematocrit and red cell aggregability in vitro but whole body impedance measurements are also correlated to some hemorheologic factors, suggesting a relationship between viscosity factors and electric properties of blood. We repeatedly reported correlations with whole body BIA and hematocrit, whole blood viscosity and plasma viscosity, red cell rigidity and RBC aggregation. The SBIA Inbody 770 modelizes body as 5 cylinders and measures impedance at 1, 5, 50, 250, 500, and 1000 kHz. With the SBIA we found that hematocrit is best correlated to leg reactance at 50 kHz but also to leg impedance at 1 and 5 kHz and trunk reactance. RBC aggregation "M" is best correlated to arm reactance at 5 kHz but also to most measurements of segmental impedance (28 correlations found). RBC aggregation "M1" is best correlated to arm reactance at 5 kHz and to 19 other impedance measurements. A predictive equation for "M" from the mean between the two arm reactances at 5 kHz (maXc5) is found: M = 2.1845maXc5-23.958 (r = 0.665, p < 0.001) that provides a satisfactory Bland-Altman plot (mean difference: 0.000524 range [-1.6;+1.6]. This study suggests that previously reported correlations between BIA and viscosity factors were not spurious, and that in a narrow cylinder such as the arm the structure of circulating blood (hematocrit, red cell aggregation) may influence the passage of an electric current by increasing reactance.
生物电阻抗测量法(BIA)已被用于体外评估血细胞比容和红细胞聚集性,但全身阻抗测量也与一些血液流变学因素相关,这表明粘度因素与血液的电学性质之间存在关联。我们多次报告了全身BIA与血细胞比容、全血粘度和血浆粘度、红细胞刚性和红细胞聚集之间的相关性。SBIA Inbody 770将人体建模为5个圆柱体,并在1、5、50、250、500和1000 kHz测量阻抗。通过SBIA我们发现,血细胞比容与50 kHz时的腿部电抗最佳相关,但也与1和5 kHz时的腿部阻抗以及躯干电抗相关。红细胞聚集“M”与5 kHz时的手臂电抗最佳相关,但也与大多数节段阻抗测量相关(共发现28个相关性)。红细胞聚集“M1”与5 kHz时的手臂电抗以及其他19项阻抗测量最佳相关。我们发现了一个根据5 kHz时两个手臂电抗的平均值(maXc5)预测“M”的方程:M = 2.1845maXc5 - 23.958(r = 0.665,p < 0.001),该方程提供了令人满意的布兰德-奥特曼图(平均差异:0.0(此处原文有误,推测应为0.000524)范围[-1.6; +1.6])。本研究表明,先前报道的BIA与粘度因素之间的相关性并非虚假的,并且在诸如手臂这样的狭窄圆柱体中,循环血液的结构(血细胞比容、红细胞聚集)可能通过增加电抗来影响电流通过。