Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France.
Laboratoire de Biophysique & Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France.
Clin Hemorheol Microcirc. 2019;71(4):397-402. doi: 10.3233/CH-199003.
We previously reported that whole body bioelectrical impedance analysis (BIA) measurements are correlated to some hemorheologic factors, suggesting a relationship between viscosity factors and electric properties of flowing blood not only in vitro but also in vivo. Recently we reported that with segmental BIA (analyzing the body considered as composed of 5 cylinders) predictive equations for various determinants of blood viscosity were closer than for the wole body. Another widely used BIA technique uses leg-to-leg impedance measurements so that two cylinders (the two legs) are analyzed. We investigated whether impedance measured with this technique (Tanita TBF-300) is also a predictor of blood viscosity factors. From viscometric measurements performed on venous blood drawn in recreative athletes over the range of shear rates 1 to 6000 s-1 (RHEOMETRE Anton Paar CP 50-1), we found a correlation between leg-leg resistance at 50 kHz (Rx[50 kHz]) and blood viscosity at 1000 s-1 (η1000= 0.0051 Rx[50 kHz] + 1.3265; r = 0.521 p = 0.028 yielding a prediction of η1000 (Bland Altman plot: bias 0.05 [RANGE - 0.24; 0.34]. Neither plasma viscosity nor the red cell rheology index «k» of Quemada's model are correlated with Rx[50 kHz], but hematocrit (Hct) does (Hct (%) = 0.0217 Rx[50 kHz] + 33.783; r = 0.480 p = 0.044) yielding a prediction of Hct (Bland Altman plot: bias - 0.11, [range - 1.67; 1.45]. The discrepancy between actual and predicted Hct is also correlated with resistance at 50 kHz (r = 0.575 p = 0.031) as does the discrepancy between actual and predicted Hct/viscosity ratio (r = -0.651 p = 0.006). Therefore, as other previously studied methods, leg to leg BIA predicts viscosity, suggesting that blood rheology may influence the passage of an electric current in the legs.
我们之前曾报道过,全身生物电阻抗分析(BIA)测量与某些血液流变学因素相关,这表明血液的粘度因素与流动血液的电特性不仅在体外,而且在体内都有关系。最近,我们报告说,使用节段 BIA(将身体分析为由 5 个圆柱体组成),各种血液粘度决定因素的预测方程比全身 BIA 更接近。另一种广泛使用的 BIA 技术使用腿部到腿部的阻抗测量,因此分析两个圆柱体(两条腿)。我们研究了这种技术(Tanita TBF-300)测量的阻抗是否也是血液粘度因素的预测因子。从在休闲运动员的静脉血中进行的粘度测量中,我们发现 50 kHz 时的腿部-腿部电阻(Rx[50 kHz])与 1000 s-1 时的血液粘度(η1000= 0.0051 Rx[50 kHz] + 1.3265;r = 0.521 p = 0.028,可预测η1000(Bland Altman 图:偏差 0.05 [范围 - 0.24;0.34]。血浆粘度和 Quemada 模型的红细胞流变学指数“k”均与 Rx[50 kHz]不相关,但血细胞比容(Hct)相关(Hct(%)= 0.0217 Rx[50 kHz] + 33.783;r = 0.480 p = 0.044),可预测 Hct(Bland Altman 图:偏差 - 0.11,[范围 - 1.67;1.45]。实际 Hct 与预测 Hct 之间的差异也与 50 kHz 时的电阻相关(r = 0.575 p = 0.031),实际 Hct/粘度比与预测 Hct/粘度比之间的差异也相关(r = -0.651 p = 0.006)。因此,与其他先前研究的方法一样,腿部到腿部 BIA 可预测粘度,表明血液流变学可能会影响电流在腿部的通过。