Suppr超能文献

用于监督分类建模的时间序列中分辨率成像光谱仪(MODIS)图像的最优子集选择及基于随机森林的样本数据传输

Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling.

作者信息

Zhou Fuqun, Zhang Aining

机构信息

Canada Centre for Remote Sensing, Natural Resources Canada, 560 Rochester Street, 6th Floor, Ottawa, ON K1A 0E4, Canada.

出版信息

Sensors (Basel). 2016 Oct 25;16(11):1783. doi: 10.3390/s16111783.

Abstract

Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2-3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests' features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.

摘要

如今,各种具有多个波段的时间序列地球观测数据均可免费获取,例如中分辨率成像光谱仪(MODIS)数据集,包括美国国家航空航天局(NASA)的8天合成数据以及加拿大遥感中心(CCRS)的10天合成数据。由于这些时间序列MODIS数据集规模庞大且信息冗余,要将其有效地用于长期环境监测具有挑战性。当地 Sentinel 2 - 3数据可用时,这一挑战将更大。研究人员面临的另一个挑战是缺乏用于监督建模的原位数据,尤其是对于时间序列数据分析而言。在本研究中,我们借助随机森林的特征:变量重要性、异常值识别,通过使用CCRS的10天MODIS合成数据进行土地覆盖制图的案例研究,尝试解决这两个重要问题。变量重要性特征用于分析和选择时间序列MODIS影像的最佳子集以进行高效的土地覆盖制图,异常值识别特征则用于将某一年可用的样本数据转移到相邻年份以进行监督分类建模。区域尺度上农业土地覆盖分类案例研究的结果表明,仅使用大约一半的变量,我们就能实现接近使用完整数据集所产生的土地覆盖分类精度。所提出的简单但有效的样本转移解决方案可以使缺乏样本数据的应用进行监督建模成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/603c/5134442/309a65e4a34d/sensors-16-01783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验