Konecny Lukas, Kadek Marius, Komorovsky Stanislav, Malkina Olga L, Ruud Kenneth, Repisky Michal
Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University , 811 02 Bratislava, Slovak Republic.
The Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT The Arctic University of Norway , 9019 Tromsø, Norway.
J Chem Theory Comput. 2016 Dec 13;12(12):5823-5833. doi: 10.1021/acs.jctc.6b00740. Epub 2016 Nov 15.
The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.
基于四分量矩阵狄拉克 - 科恩 - 沙姆哈密顿量的刘维尔 - 冯·诺依曼方程被转换为准相对论精确二分量(X2C)形式,然后仅用于求解电子态的时间演化。通过这种方式,实现了7倍或更高的显著加速。原始四分量运动方程的转换完全用矩阵代数来表述,紧密遵循伊利亚斯和绍厄[《化学物理杂志》2007年,126卷,064102]先前针对静态(与时间无关)情况提出的X2C解耦程序。然而,在动态(与时间有关)情况下,为了在时间演化过程中保持含时狄拉克 - 福克算子的块对角形式,还必须引入绝热近似。由此产生的X2C刘维尔 - 冯·诺依曼电子动力学(X2C - LvNED)易于实现,因为它不需要负责(高阶)相对论修正和/或与外部场相互作用的图像变换算符的显式形式。为了说明该方法的准确性和性能,给出了非线性光学性质的数值结果和计算时间。所有时域X2C - LvNED结果与参考四分量计算以及从频域响应理论获得的结果都显示出极好的一致性。