Suppr超能文献

精确双组分理论中单组分和双组分分析能量梯度的高效实现。

Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory.

机构信息

Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.

出版信息

J Chem Phys. 2018 Mar 14;148(10):104110. doi: 10.1063/1.5022153.

Abstract

We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

摘要

我们提出了一种高效的算法,可用于在精确的双分量解耦方法(X2C)中针对核位移计算单分量和双分量解析能量梯度,该方法适用于单电子狄拉克方程。我们的方法是 Cheng 和 Gauss [J. Chem. Phys. 135, 084114 (2011)]的无自旋假设的推广,其中通过求解一阶响应方程来计算受扰的单电子哈密顿量。通过将单位分解耦变换(DLU)的对角局部近似应用于 X2C 哈密顿量(DLU)[D. Peng 和 M. Reiher, J. Chem. Phys. 136, 244108 (2012)],大大降低了计算成本。引入的误差几乎可以忽略不计,因为优化结构的平均绝对误差仅为 0.01 pm。我们在 TURBOMOLE 中的实现也可在基于高斯电荷分布的有限核模型中使用。对于 X2C/DLU 梯度计算,计算工作量与分子大小呈立方比例增加,而存储量呈平方比例增加。在计算大的银团簇和有机金属铱配合物时,效率得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验