Autschbach Jochen
Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260-3000, United States.
J Chem Theory Comput. 2017 Feb 14;13(2):710-718. doi: 10.1021/acs.jctc.6b01014. Epub 2017 Jan 3.
An exact 2-component (X2C) transformation of the one-electron Hamiltonian is used to transform nuclear hyperfine magnetic field operators from the 4-component Dirac picture to 2-component form. Numerical applications are concerned with hyperfine coupling constants of one-electron and many-electron atoms, as well as the HgH radical, using spin-unrestricted scalar X2C Hartree-Fock and Kohn-Sham theory. Reference data for 2-component generalized-collinear X2C calculations, including spin-orbit coupling, are also provided for selected cases. Calculations for one-electron atomic n s states with n = 1-3 show that the X2C transformed hyperfine operators give accurate hyperfine coupling constants. Kohn-Sham one-electron self-interaction errors for these states are small. The performance of the X2C transformed hyperfine operator for many-electron systems is also promising. The method is straightforward to implement in codes using spin-unrestricted (1-component) or 2-component spinor orbitals.
使用单电子哈密顿量的精确二分量(X2C)变换,将核超精细磁场算符从四分量狄拉克表象变换为二分量形式。数值应用涉及单电子和多电子原子以及HgH自由基的超精细耦合常数,采用自旋非限制标量X2C哈特里 - 福克和科恩 - 沈理论。还针对选定情况提供了包括自旋 - 轨道耦合在内的二分量广义共线X2C计算的参考数据。对n = 1 - 3的单电子原子ns态的计算表明,X2C变换后的超精细算符给出了准确的超精细耦合常数。这些态的科恩 - 沈单电子自相互作用误差很小。X2C变换后的超精细算符在多电子系统中的性能也很有前景。该方法在使用自旋非限制(单分量)或二分量旋量轨道的代码中易于实现。