Johnson Jared M, Im Soohyun, Windl Wolfgang, Hwang Jinwoo
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43212, USA.
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43212, USA.
Ultramicroscopy. 2017 Jan;172:17-29. doi: 10.1016/j.ultramic.2016.10.007. Epub 2016 Oct 18.
We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-GaO and SrTiO, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials.
我们提出了一种新的扫描透射电子显微镜(STEM)技术,该技术能够高精度地实现空位、轻掺杂剂和重掺杂剂的三维(3D)表征。通过对β-GaO和SrTiO进行多切片STEM成像和衍射模拟,我们表明选择小范围的低散射角可以使含缺陷原子列的对比度在很大程度上更依赖于深度。深度依赖性的起源是由于原子列中存在点缺陷导致电子的去通道化,这在低散射角处产生额外的“波纹”。当使用20-40毫弧度的检测角范围捕获去通道化信号时,可以实现点缺陷的最高对比度。还将讨论样品厚度、晶体取向、局部应变、探针会聚角和实验不确定性对点缺陷深度依赖性对比度的影响。因此,所提出的技术为功能材料中单个点缺陷的高精度3D结构表征开辟了新的可能性。