Suppr超能文献

表型抗生素敏感性测试中的微流控技术进展

Microfluidic advances in phenotypic antibiotic susceptibility testing.

作者信息

Campbell Jennifer, McBeth Christine, Kalashnikov Maxim, Boardman Anna K, Sharon Andre, Sauer-Budge Alexis F

机构信息

Fraunhofer USA - Center for Manufacturing Innovation, Brookline, MA, 02446, USA.

Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.

出版信息

Biomed Microdevices. 2016 Dec;18(6):103. doi: 10.1007/s10544-016-0121-8.

Abstract

A strong natural selection for microbial antibiotic resistance has resulted from the extensive use and misuse of antibiotics. Though multiple factors are responsible for this crisis, the most significant factor - widespread prescription of broad-spectrum antibiotics - is largely driven by the fact that the standard process for determining antibiotic susceptibility includes a 1-2-day culture period, resulting in 48-72 h from patient sample to final determination. Clearly, disruptive approaches, rather than small incremental gains, are needed to address this issue. The field of microfluidics promises several advantages over existing macro-scale methods, including: faster assays, increased multiplexing, smaller volumes, increased portability for potential point-of-care use, higher sensitivity, and rapid detection methods. This Perspective will cover the advances made in the field of microfluidic, phenotypic antibiotic susceptibility testing (AST) over the past two years. Sections are organized based on the functionality of the chip - from simple microscopy platforms, to gradient generators, to antibody-based capture devices. Microfluidic AST methods that monitor growth as well as those that are not based on growth are presented. Finally, we will give our perspective on the major hurdles still facing the field, including the need for rapid sample preparation and affordable detection technologies.

摘要

抗生素的广泛使用和滥用导致了对微生物抗生素耐药性的强大自然选择。尽管造成这一危机的因素众多,但最主要的因素——广谱抗生素的广泛处方——很大程度上是由以下事实驱动的:确定抗生素敏感性的标准流程包括1至2天的培养期,从患者样本到最终确定结果需要48至72小时。显然,需要采取颠覆性方法,而非微小的渐进式改进,来解决这一问题。微流控领域相较于现有的宏观尺度方法具有若干优势,包括:检测速度更快、多重检测能力增强、体积更小、便于携带可用于潜在的即时检测、灵敏度更高以及具备快速检测方法。本观点将涵盖过去两年微流控表型抗生素敏感性测试(AST)领域所取得的进展。各部分根据芯片功能进行组织——从简单的显微镜平台到梯度发生器,再到基于抗体的捕获装置。介绍了监测生长的微流控AST方法以及那些不基于生长的方法。最后,我们将阐述该领域仍面临的主要障碍,包括对快速样本制备和经济实惠的检测技术的需求。

相似文献

1
Microfluidic advances in phenotypic antibiotic susceptibility testing.
Biomed Microdevices. 2016 Dec;18(6):103. doi: 10.1007/s10544-016-0121-8.
2
Identification and Antimicrobial Susceptibility Testing of Using a Microfluidic Lab-on-a-Chip Device.
Appl Environ Microbiol. 2020 Apr 17;86(9). doi: 10.1128/AEM.00096-20.
3
A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
Anal Bioanal Chem. 2021 Feb;413(4):1127-1136. doi: 10.1007/s00216-020-03076-8. Epub 2021 Jan 8.
4
A Multiplex Fluidic Chip for Rapid Phenotypic Antibiotic Susceptibility Testing.
mBio. 2020 Feb 25;11(1):e03109-19. doi: 10.1128/mBio.03109-19.
5
Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System.
Anal Chem. 2019 Sep 3;91(17):10988-10995. doi: 10.1021/acs.analchem.9b01027. Epub 2019 Aug 19.
7
Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform.
ACS Appl Mater Interfaces. 2021 May 5;13(17):19581-19592. doi: 10.1021/acsami.0c23096. Epub 2021 Apr 22.
8
A Thermoplastic Microsystem to Perform Antibiotic Susceptibility Testing by Monitoring Oxygen Consumption.
Methods Mol Biol. 2024;2804:179-194. doi: 10.1007/978-1-0716-3850-7_11.
9
Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: Review and Perspective.
ACS Sens. 2021 Jan 22;6(1):3-21. doi: 10.1021/acssensors.0c02175. Epub 2020 Dec 18.
10
Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods.
Biotechnol Lett. 2019 Feb;41(2):221-230. doi: 10.1007/s10529-018-02638-2. Epub 2018 Dec 12.

引用本文的文献

1
Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods.
Front Microbiol. 2025 Feb 25;16:1549044. doi: 10.3389/fmicb.2025.1549044. eCollection 2025.
3
Bacteriuria and phenotypic antimicrobial susceptibility testing in 45 min by point-of-care Sysmex PA-100 System: first clinical evaluation.
Eur J Clin Microbiol Infect Dis. 2024 Aug;43(8):1533-1543. doi: 10.1007/s10096-024-04862-3. Epub 2024 Jun 3.
4
3D Printed Materials for Combating Antimicrobial Resistance.
Mater Today (Kidlington). 2023 Jul-Aug;67:371-398. doi: 10.1016/j.mattod.2023.05.030. Epub 2023 Jun 19.
5
3D microfluidic gradient generator for combination antimicrobial susceptibility testing.
Microsyst Nanoeng. 2020 Nov 2;6:92. doi: 10.1038/s41378-020-00200-7. eCollection 2020.
7
Modern Tools for Rapid Diagnostics of Antimicrobial Resistance.
Front Cell Infect Microbiol. 2020 Jul 15;10:308. doi: 10.3389/fcimb.2020.00308. eCollection 2020.
8
Rapid Susceptibility Testing Methods.
Clin Lab Med. 2019 Sep;39(3):333-344. doi: 10.1016/j.cll.2019.04.001. Epub 2019 Jun 12.

本文引用的文献

2
A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa.
PLoS One. 2016 Feb 12;11(2):e0148797. doi: 10.1371/journal.pone.0148797. eCollection 2016.
4
Rapid drug susceptibility test of Mycobacterium tuberculosis using microscopic time-lapse imaging in an agarose matrix.
Appl Microbiol Biotechnol. 2016 Mar;100(5):2355-65. doi: 10.1007/s00253-015-7210-0. Epub 2016 Jan 12.
5
Determination of antibiotic EC50 using a zero-flow microfluidic chip based growth phenotype assay.
Biotechnol J. 2015 Sep;10(11):1783-91. doi: 10.1002/biot.201500037. Epub 2015 Jul 16.
6
Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics.
Lab Chip. 2015 May 21;15(10):2297-307. doi: 10.1039/c5lc00311c.
7
Hydrogel-based microfluidic incubator for microorganism cultivation and analyses.
Biomicrofluidics. 2015 Feb 27;9(1):014127. doi: 10.1063/1.4913647. eCollection 2015 Jan.
8
Rapid microbial sample preparation from blood using a novel concentration device.
PLoS One. 2015 Feb 12;10(2):e0116837. doi: 10.1371/journal.pone.0116837. eCollection 2015.
10
A rapid antimicrobial susceptibility test based on single-cell morphological analysis.
Sci Transl Med. 2014 Dec 17;6(267):267ra174. doi: 10.1126/scitranslmed.3009650.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验