Suppr超能文献

基于水凝胶的微流控孵育器用于微生物的培养和分析。

Hydrogel-based microfluidic incubator for microorganism cultivation and analyses.

机构信息

Institute for Microsensors, -actuators and -systems (IMSAS), MCB, University of Bremen , 28359 Bremen, Germany.

Austrian Center for Medical Innovation and Technology (ACMIT) , 2700 Wiener Neustadt, Austria.

出版信息

Biomicrofluidics. 2015 Feb 27;9(1):014127. doi: 10.1063/1.4913647. eCollection 2015 Jan.

Abstract

This work presents an array of microfluidic chambers for on-chip culturing of microorganisms in static and continuous shear-free operation modes. The unique design comprises an in-situ polymerized hydrogel that forms gas and reagent permeable culture wells in a glass chip. Utilizing a hydrophilic substrate increases usability by autonomous capillary priming. The thin gel barrier enables efficient oxygen supply and facilitates on-chip analysis by chemical access through the gel without introducing a disturbing flow to the culture. Trapping the suspended microorganisms inside a gel well allows for a much simpler fabrication than in conventional trapping devices as the minimal feature size does not depend on cell size. Nutrients and drugs are provided on-chip in the gel for a self-contained and user-friendly handling. Rapid antibiotic testing in static cultures with strains of Enterococcus faecalis and Escherichia coli is presented. Cell seeding and diffusive medium supply is provided by phaseguide technology, enabling simple operation of continuous culturing with a great flexibility. Cells of Saccharomyces cerevisiae are utilized as a model to demonstrate continuous on-chip culturing.

摘要

这项工作提出了一系列微流控腔室,用于在静态和连续无剪切操作模式下在芯片上培养微生物。独特的设计包括原位聚合的水凝胶,在玻璃芯片中形成气体和试剂可渗透的培养孔。利用亲水基底通过自主毛细作用进行初始润湿,提高了可用性。薄的凝胶屏障可实现有效的氧气供应,并通过凝胶进行化学进入,从而便于在芯片上进行分析,而不会对培养物引入干扰流。将悬浮的微生物困在凝胶孔内比在传统的捕获装置中更容易制造,因为最小特征尺寸不依赖于细胞尺寸。在凝胶中提供营养物质和药物,实现了自包含和用户友好的处理。通过静态培养对粪肠球菌和大肠杆菌菌株进行快速抗生素测试。利用相导技术提供细胞播种和扩散介质供应,实现了连续培养的简单操作,具有很大的灵活性。利用酿酒酵母细胞作为模型,展示了连续的芯片上培养。

相似文献

1
Hydrogel-based microfluidic incubator for microorganism cultivation and analyses.
Biomicrofluidics. 2015 Feb 27;9(1):014127. doi: 10.1063/1.4913647. eCollection 2015 Jan.
3
Rapid spheroid clearing on a microfluidic chip.
Lab Chip. 2017 Dec 19;18(1):153-161. doi: 10.1039/c7lc01114h.
5
Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis.
Front Microbiol. 2023 Jun 20;14:1198170. doi: 10.3389/fmicb.2023.1198170. eCollection 2023.
6
7
9
Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves.
Biomicrofluidics. 2014 Sep 19;8(5):056501. doi: 10.1063/1.4896063. eCollection 2014 Sep.

引用本文的文献

2
Microfluidics: Insights into Intestinal Microorganisms.
Microorganisms. 2023 Apr 27;11(5):1134. doi: 10.3390/microorganisms11051134.
4
Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene.
Micromachines (Basel). 2021 Oct 31;12(11):1348. doi: 10.3390/mi12111348.
5
Rapid Phenotypic Antibiotic Susceptibility Testing of Uropathogens Using Optical Signal Analysis on the Nanowell Slide.
Front Microbiol. 2018 Jul 10;9:1530. doi: 10.3389/fmicb.2018.01530. eCollection 2018.
6
Rapid antibiotic sensitivity testing in microwell arrays.
Technology (Singap World Sci). 2017 Jun;5(2):107-114. doi: 10.1142/S2339547817500030. Epub 2017 May 16.
7
Microfluidic advances in phenotypic antibiotic susceptibility testing.
Biomed Microdevices. 2016 Dec;18(6):103. doi: 10.1007/s10544-016-0121-8.

本文引用的文献

1
A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture.
Biomicrofluidics. 2014 Aug 27;8(4):046505. doi: 10.1063/1.4894409. eCollection 2014 Jul.
2
Vascular smooth muscle cell culture in microfluidic devices.
Biomicrofluidics. 2014 Aug 25;8(4):046504. doi: 10.1063/1.4893914. eCollection 2014 Jul.
4
Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling.
Biomicrofluidics. 2014 Jul 10;8(4):044104. doi: 10.1063/1.4887098. eCollection 2014 Jul.
5
Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture.
Biomicrofluidics. 2014 Jun 16;8(3):036504. doi: 10.1063/1.4883075. eCollection 2014 May.
7
A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion.
Biomicrofluidics. 2013 May 8;7(3):34101. doi: 10.1063/1.4804250. eCollection 2013.
9
High yield fabrication of multilayer polydimethylsiloxane [corrected] devices with freestanding micropillar arrays.
Biomicrofluidics. 2013 Oct 28;7(5):56503. doi: 10.1063/1.4827600. eCollection 2013.
10
Microfluidic devices for cell cultivation and proliferation.
Biomicrofluidics. 2013 Oct 29;7(5):51502. doi: 10.1063/1.4826935. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验