Suppr超能文献

多采集平衡稳态自由进动成像的谱编码重建。

Profile-encoding reconstruction for multiple-acquisition balanced steady-state free precession imaging.

机构信息

Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.

National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.

出版信息

Magn Reson Med. 2017 Oct;78(4):1316-1329. doi: 10.1002/mrm.26507. Epub 2016 Oct 31.

Abstract

PURPOSE

The scan-efficiency in multiple-acquisition balanced steady-state free precession imaging can be maintained by accelerating and reconstructing each phase-cycled acquisition individually, but this strategy ignores correlated structural information among acquisitions. Here, an improved acceleration framework is proposed that jointly processes undersampled data across N phase cycles.

METHODS

Phase-cycled imaging is cast as a profile-encoding problem, modeling each image as an artifact-free image multiplied with a distinct balanced steady-state free precession profile. A profile-encoding reconstruction (PE-SSFP) is employed to recover missing data by enforcing joint sparsity and total-variation penalties across phase cycles. PE-SSFP is compared with individual compressed-sensing and parallel-imaging (ESPIRiT) reconstructions.

RESULTS

In the brain and the knee, PE-SSFP yields improved image quality compared to individual compressed-sensing and other tested methods particularly for higher N values. On average, PE-SSFP improves peak SNR by 3.8 ± 3.0 dB (mean ± s.e. across N = 2-8) and structural similarity by 1.4 ± 1.2% over individual compressed-sensing, and peak SNR by 5.6 ± 0.7 dB and structural similarity by 7.1 ± 0.5% over ESPIRiT.

CONCLUSION

PE-SSFP attains improved image quality and preservation of high-spatial-frequency information at high acceleration factors, compared to conventional reconstructions. PE-SSFP is a promising technique for scan-efficient balanced steady-state free precession imaging with improved reliability against field inhomogeneity. Magn Reson Med 78:1316-1329, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

通过加速和单独重建每个相循环采集,可以保持多采集平衡稳态自由进动成像中的扫描效率,但这种策略忽略了采集之间的相关结构信息。这里,提出了一种改进的加速框架,该框架可以联合处理 N 个相循环中的欠采样数据。

方法

相循环成像被视为轮廓编码问题,将每个图像建模为无伪影图像与独特的平衡稳态自由进动轮廓相乘。采用轮廓编码重建(PE-SSFP)通过在相循环中施加联合稀疏性和全变差惩罚来恢复缺失数据。将 PE-SSFP 与单独的压缩感知和并行成像(ESPIRiT)重建进行比较。

结果

在大脑和膝盖中,与单独的压缩感知和其他测试方法相比,PE-SSFP 产生了更好的图像质量,特别是在更高的 N 值下。平均而言,PE-SSFP 相对于单独的压缩感知提高了 3.8±3.0dB(N=2-8 时的平均值±标准误差)的峰值 SNR 和 1.4±1.2%的结构相似度,相对于 ESPIRiT 提高了 5.6±0.7dB 的峰值 SNR 和 7.1±0.5%的结构相似度。

结论

与传统重建相比,PE-SSFP 在高加速因子下可获得更好的图像质量和高空间频率信息的保留。PE-SSFP 是一种很有前途的技术,可用于扫描效率高的平衡稳态自由进动成像,并可提高对磁场不均匀性的可靠性。磁共振医学 78:1316-1329,2017。©2016 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验