Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.
National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
Magn Reson Med. 2017 Oct;78(4):1316-1329. doi: 10.1002/mrm.26507. Epub 2016 Oct 31.
The scan-efficiency in multiple-acquisition balanced steady-state free precession imaging can be maintained by accelerating and reconstructing each phase-cycled acquisition individually, but this strategy ignores correlated structural information among acquisitions. Here, an improved acceleration framework is proposed that jointly processes undersampled data across N phase cycles.
Phase-cycled imaging is cast as a profile-encoding problem, modeling each image as an artifact-free image multiplied with a distinct balanced steady-state free precession profile. A profile-encoding reconstruction (PE-SSFP) is employed to recover missing data by enforcing joint sparsity and total-variation penalties across phase cycles. PE-SSFP is compared with individual compressed-sensing and parallel-imaging (ESPIRiT) reconstructions.
In the brain and the knee, PE-SSFP yields improved image quality compared to individual compressed-sensing and other tested methods particularly for higher N values. On average, PE-SSFP improves peak SNR by 3.8 ± 3.0 dB (mean ± s.e. across N = 2-8) and structural similarity by 1.4 ± 1.2% over individual compressed-sensing, and peak SNR by 5.6 ± 0.7 dB and structural similarity by 7.1 ± 0.5% over ESPIRiT.
PE-SSFP attains improved image quality and preservation of high-spatial-frequency information at high acceleration factors, compared to conventional reconstructions. PE-SSFP is a promising technique for scan-efficient balanced steady-state free precession imaging with improved reliability against field inhomogeneity. Magn Reson Med 78:1316-1329, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
通过加速和单独重建每个相循环采集,可以保持多采集平衡稳态自由进动成像中的扫描效率,但这种策略忽略了采集之间的相关结构信息。这里,提出了一种改进的加速框架,该框架可以联合处理 N 个相循环中的欠采样数据。
相循环成像被视为轮廓编码问题,将每个图像建模为无伪影图像与独特的平衡稳态自由进动轮廓相乘。采用轮廓编码重建(PE-SSFP)通过在相循环中施加联合稀疏性和全变差惩罚来恢复缺失数据。将 PE-SSFP 与单独的压缩感知和并行成像(ESPIRiT)重建进行比较。
在大脑和膝盖中,与单独的压缩感知和其他测试方法相比,PE-SSFP 产生了更好的图像质量,特别是在更高的 N 值下。平均而言,PE-SSFP 相对于单独的压缩感知提高了 3.8±3.0dB(N=2-8 时的平均值±标准误差)的峰值 SNR 和 1.4±1.2%的结构相似度,相对于 ESPIRiT 提高了 5.6±0.7dB 的峰值 SNR 和 7.1±0.5%的结构相似度。
与传统重建相比,PE-SSFP 在高加速因子下可获得更好的图像质量和高空间频率信息的保留。PE-SSFP 是一种很有前途的技术,可用于扫描效率高的平衡稳态自由进动成像,并可提高对磁场不均匀性的可靠性。磁共振医学 78:1316-1329,2017。©2016 国际磁共振学会。