Suppr超能文献

非均匀拥挤环境中大分子缔合的热力学:基于简化模型的理论与模拟研究

Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.

作者信息

Ando Tadashi, Yu Isseki, Feig Michael, Sugita Yuji

机构信息

RIKEN Quantitative Biology Center (QBiC), Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

RIKEN Theoretical Molecular Science Laboratory and iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

出版信息

J Phys Chem B. 2016 Nov 23;120(46):11856-11865. doi: 10.1021/acs.jpcb.6b06243. Epub 2016 Nov 15.

Abstract

The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.

摘要

细胞的细胞质中挤满了许多不同种类的大分子。大分子拥挤效应影响活细胞中生物反应的热力学和动力学,如蛋白质折叠、缔合和扩散。使用简化模型的理论和模拟研究聚焦于拥挤效应的基本特征,并为分析实验数据提供了基础。在之前大多数关于拥挤效应的研究中,假定拥挤剂大小是均匀的,这与活细胞中大分子大小的非均匀分布形成对比。在此,我们通过硬球流体理论和使用布朗动力学轨迹的自由能计算,评估类细胞非均匀拥挤系统中大分子缔合时的自由能变化。基于41种不同类型大分子(由具有不同半径的球体表示)的非均匀拥挤模型模拟了生殖支原体细胞质中大分子的生理浓度。通过理论和模拟评估的大分子缔合自由能变化彼此吻合良好。拥挤剂大小分布影响特异性和非特异性分子缔合,这表明不仅体积分数,而且大分子的大小分布都是评估体内拥挤效应的重要因素。本研究通过使用具有拥挤剂大小异质性的硬球流体理论,将大分子拥挤的体外实验与体内拥挤效应联系起来。

相似文献

1
Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.
J Phys Chem B. 2016 Nov 23;120(46):11856-11865. doi: 10.1021/acs.jpcb.6b06243. Epub 2016 Nov 15.
3
Analysis of the size dependence of macromolecular crowding shows that smaller is better.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):7990-5. doi: 10.1073/pnas.1505396112. Epub 2015 Jun 15.
4
Crowding effects on protein association: effect of interactions between crowding agents.
J Phys Chem B. 2011 Jan 20;115(2):347-53. doi: 10.1021/jp107123y. Epub 2010 Dec 17.
5
Nonuniform Crowding Enhances Transport.
ACS Nano. 2019 Aug 27;13(8):8946-8956. doi: 10.1021/acsnano.9b02811. Epub 2019 Jul 16.
6
Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 1):051902. doi: 10.1103/PhysRevE.66.051902. Epub 2002 Nov 7.
8
Effect of macromolecular crowding on reaction rates: a computational and theoretical study.
Biophys J. 2009 Feb 18;96(4):1333-40. doi: 10.1016/j.bpj.2008.11.030.
9
Macromolecular crowding effects on protein-protein binding affinity and specificity.
J Chem Phys. 2010 Nov 28;133(20):205101. doi: 10.1063/1.3516589.
10
Macromolecular crowding effects on coupled folding and binding.
J Phys Chem B. 2014 Nov 6;118(44):12621-9. doi: 10.1021/jp508046y. Epub 2014 Oct 23.

引用本文的文献

1
Physical effects of crowdant size and concentration on collective microtubule polymerization.
Biophys J. 2025 Mar 4;124(5):789-806. doi: 10.1016/j.bpj.2025.01.020. Epub 2025 Jan 29.
2
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
Chem Rev. 2024 Apr 10;124(7):3932-3977. doi: 10.1021/acs.chemrev.3c00550. Epub 2024 Mar 27.
3
Spermidine strongly increases the fidelity of CRISPR Cas1-Cas2 integrase.
J Biol Chem. 2019 Jul 19;294(29):11311-11322. doi: 10.1074/jbc.RA119.007619. Epub 2019 Jun 6.
4
Computational approaches to macromolecular interactions in the cell.
Curr Opin Struct Biol. 2019 Apr;55:59-65. doi: 10.1016/j.sbi.2019.03.012. Epub 2019 Apr 15.
5
A global map of the protein shape universe.
PLoS Comput Biol. 2019 Apr 12;15(4):e1006969. doi: 10.1371/journal.pcbi.1006969. eCollection 2019 Apr.
6
Molecular simulations of cellular processes.
Biophys Rev. 2017 Dec;9(6):941-958. doi: 10.1007/s12551-017-0363-6. Epub 2017 Nov 28.
7
Crowding in Cellular Environments at an Atomistic Level from Computer Simulations.
J Phys Chem B. 2017 Aug 31;121(34):8009-8025. doi: 10.1021/acs.jpcb.7b03570. Epub 2017 Jul 12.

本文引用的文献

1
GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.
Wiley Interdiscip Rev Comput Mol Sci. 2015 Jul;5(4):310-323. doi: 10.1002/wcms.1220. Epub 2015 May 7.
2
Analysis of the size dependence of macromolecular crowding shows that smaller is better.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):7990-5. doi: 10.1073/pnas.1505396112. Epub 2015 Jun 15.
3
Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology.
J Mol Graph Model. 2015 May;58:1-9. doi: 10.1016/j.jmgm.2015.02.004. Epub 2015 Feb 28.
4
Connecting the dots: the effects of macromolecular crowding on cell physiology.
Biophys J. 2014 Dec 16;107(12):2761-2766. doi: 10.1016/j.bpj.2014.10.051.
5
Revisiting a dogma: the effect of volume exclusion in molecular crowding.
Curr Opin Struct Biol. 2015 Feb;30:1-6. doi: 10.1016/j.sbi.2014.10.005. Epub 2014 Nov 19.
7
Protein folding dynamics in the cell.
J Phys Chem B. 2014 Jul 24;118(29):8459-70. doi: 10.1021/jp501866v. Epub 2014 Jun 17.
8
Protein crowder charge and protein stability.
Biochemistry. 2014 Mar 18;53(10):1601-6. doi: 10.1021/bi4016346. Epub 2014 Mar 3.
9
Impact of reconstituted cytosol on protein stability.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19342-7. doi: 10.1073/pnas.1312678110. Epub 2013 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验