Suppr超能文献

大分子拥挤对反应速率的影响:一项计算与理论研究。

Effect of macromolecular crowding on reaction rates: a computational and theoretical study.

作者信息

Kim Jun Soo, Yethiraj Arun

机构信息

Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

Biophys J. 2009 Feb 18;96(4):1333-40. doi: 10.1016/j.bpj.2008.11.030.

Abstract

The effect of macromolecular crowding on the rates of association reactions are investigated using theory and computer simulations. Reactants and crowding agents are both hard spheres, and when two reactants collide they form product with a reaction probability, p(rxn). A value of p(rxn) < 1 crudely mimics the fact that proteins must be oriented properly for an association reaction to occur. The simulations show that the dependence of the reaction rate on the volume fraction of crowding agents varies with the reaction probability. For reaction probabilities close to unity where most of encounters between reactants lead to a reaction, the reaction rate always decreases as the volume fraction of crowding agents is increased due to the reduced diffusion coefficient of reactants. On the other hand, for very small reaction probabilities where, in most of encounters, the reaction does not occur, the reaction rate increases with the volume fraction of crowding agents--in this case, due to the increase probability of a recollision. The Smoluchowski theory refined with the radiation boundary condition and the radial distribution function at contact is in quantitative agreement with simulations for the reaction rate constant and allows the quantitative analysis of both effects separately.

摘要

利用理论和计算机模拟研究了大分子拥挤对缔合反应速率的影响。反应物和拥挤剂均为硬球,当两个反应物碰撞时,它们以反应概率p(rxn)形成产物。p(rxn) < 1的值粗略地模拟了蛋白质必须正确取向才能发生缔合反应这一事实。模拟结果表明,反应速率对拥挤剂体积分数的依赖性随反应概率而变化。对于反应概率接近1的情况,即反应物之间的大多数碰撞都会导致反应,由于反应物扩散系数降低,反应速率总是随着拥挤剂体积分数的增加而降低。另一方面,对于反应概率非常小的情况,即在大多数碰撞中反应不会发生,反应速率随拥挤剂体积分数增加——在这种情况下,是由于再碰撞概率增加。用辐射边界条件和接触时的径向分布函数改进的斯莫卢霍夫斯基理论与反应速率常数的模拟结果在定量上一致,并允许分别对这两种效应进行定量分析。

相似文献

1
Effect of macromolecular crowding on reaction rates: a computational and theoretical study.
Biophys J. 2009 Feb 18;96(4):1333-40. doi: 10.1016/j.bpj.2008.11.030.
2
Crowding effects on association reactions at membranes.
Biophys J. 2010 Mar 17;98(6):951-8. doi: 10.1016/j.bpj.2009.11.022.
3
Crowding effects on protein association: effect of interactions between crowding agents.
J Phys Chem B. 2011 Jan 20;115(2):347-53. doi: 10.1021/jp107123y. Epub 2010 Dec 17.
4
Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.
J Phys Chem B. 2016 Nov 23;120(46):11856-11865. doi: 10.1021/acs.jpcb.6b06243. Epub 2016 Nov 15.
5
Effects of surfaces and macromolecular crowding on bimolecular reaction rates.
Phys Biol. 2020 May 15;17(4):045001. doi: 10.1088/1478-3975/ab7f51.
6
Particle-Based Simulation Reveals Macromolecular Crowding Effects on the Michaelis-Menten Mechanism.
Biophys J. 2019 Jul 23;117(2):355-368. doi: 10.1016/j.bpj.2019.06.017. Epub 2019 Jun 25.
8
Theory of Crowding Effects on Bimolecular Reaction Rates.
J Phys Chem B. 2016 Jul 7;120(26):5998-6002. doi: 10.1021/acs.jpcb.6b01892. Epub 2016 May 2.
9
Effects of macromolecular crowding on genetic networks.
Biophys J. 2011 Dec 21;101(12):2882-91. doi: 10.1016/j.bpj.2011.10.053. Epub 2011 Dec 20.

引用本文的文献

2
Nanoparticle transport in biomimetic polymer-linked emulsions.
AIChE J. 2024 Feb;70(2). doi: 10.1002/aic.18307. Epub 2023 Dec 16.
3
Physical effects of crowdant size and concentration on collective microtubule polymerization.
Biophys J. 2025 Mar 4;124(5):789-806. doi: 10.1016/j.bpj.2025.01.020. Epub 2025 Jan 29.
4
Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds.
Nano Lett. 2024 Apr 12;24(16):4801-9. doi: 10.1021/acs.nanolett.3c05100.
5
Kinetic trapping organizes actin filaments within liquid-like protein droplets.
Nat Commun. 2024 Apr 11;15(1):3139. doi: 10.1038/s41467-024-46726-6.
6
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
Chem Rev. 2024 Apr 10;124(7):3932-3977. doi: 10.1021/acs.chemrev.3c00550. Epub 2024 Mar 27.
7
Molecular Basis for Actin Polymerization Kinetics Modulated by Solution Crowding.
Biomolecules. 2023 May 2;13(5):786. doi: 10.3390/biom13050786.
9
Topological digestion drives time-varying rheology of entangled DNA fluids.
Nat Commun. 2022 Jul 28;13(1):4389. doi: 10.1038/s41467-022-31828-w.
10

本文引用的文献

2
Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments.
Anal Chem. 2007 Jul 15;79(14):5322-7. doi: 10.1021/ac070226l. Epub 2007 Jun 15.
3
How can biochemical reactions within cells differ from those in test tubes?
J Cell Sci. 2006 Jul 15;119(Pt 14):2863-9. doi: 10.1242/jcs.03063.
4
Protein folding and binding in confined spaces and in crowded solutions.
J Mol Recognit. 2004 Sep-Oct;17(5):368-75. doi: 10.1002/jmr.711.
7
Cell biology: join the crowd.
Nature. 2003 Sep 4;425(6953):27-8. doi: 10.1038/425027a.
8
Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges.
Biochim Biophys Acta. 2003 Jul 30;1649(2):127-39. doi: 10.1016/s1570-9639(03)00167-5.
9
Cellular motility driven by assembly and disassembly of actin filaments.
Cell. 2003 Feb 21;112(4):453-65. doi: 10.1016/s0092-8674(03)00120-x.
10
Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.
Biophys J. 2002 Oct;83(4):1891-901. doi: 10.1016/S0006-3495(02)73953-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验