Suppr超能文献

用于主动脉瘤破裂现场分诊的救护车智能手机工具(FILTR):诊断准确性前瞻性观察验证的研究方案

Ambulance smartphone tool for field triage of ruptured aortic aneurysms (FILTR): study protocol for a prospective observational validation of diagnostic accuracy.

作者信息

Lewis Thomas L, Fothergill Rachael T, Karthikesalingam Alan

机构信息

St George's Vascular Institute, St George's University of London, London, UK.

Clinical Audit & Research Unit, London Ambulance Service NHS Trust, 8-20 Pocock Street, London, UK.

出版信息

BMJ Open. 2016 Oct 24;6(10):e011308. doi: 10.1136/bmjopen-2016-011308.

Abstract

INTRODUCTION

Rupture of an abdominal aortic aneurysm (rAAA) carries a considerable mortality rate and is often fatal. rAAA can be treated through open or endovascular surgical intervention and it is possible that more rapid access to definitive intervention might be a key aspect of improving mortality for rAAA. Diagnosis is not always straightforward with up to 42% of rAAA initially misdiagnosed, introducing potentially harmful delay. There is a need for an effective clinical decision support tool for accurate prehospital diagnosis and triage to enable transfer to an appropriate centre.

METHODS AND ANALYSIS

Prospective multicentre observational study assessing the diagnostic accuracy of a prehospital smartphone triage tool for detection of rAAA. The study will be conducted across London in conjunction with London Ambulance Service (LAS). A logistic score predicting the risk of rAAA by assessing ten key parameters was developed and retrospectively validated through logistic regression analysis of ambulance records and Hospital Episode Statistics data for 2200 patients from 2005 to 2010. The triage tool is integrated into a secure mobile app for major smartphone platforms. Key parameters collected from the app will be retrospectively matched with final hospital discharge diagnosis for each patient encounter. The primary outcome is to assess the sensitivity, specificity and positive predictive value of the rAAA triage tool logistic score in prospective use as a mob app for prehospital ambulance clinicians. Data collection started in November 2014 and the study will recruit a minimum of 1150 non-consecutive patients over a time period of 2 years.

ETHICS AND DISSEMINATION

Full ethical approval has been gained for this study. The results of this study will be disseminated in peer-reviewed publications, and international/national presentations.

TRIAL REGISTRATION NUMBER

CPMS 16459; pre-results.

摘要

引言

腹主动脉瘤破裂(rAAA)死亡率相当高,往往是致命的。rAAA可通过开放手术或血管内手术干预进行治疗,更快地获得确定性干预可能是提高rAAA死亡率的关键因素。诊断并非总是一目了然,高达42%的rAAA最初会被误诊,从而导致潜在的有害延误。需要一种有效的临床决策支持工具来进行准确的院前诊断和分诊,以便转送至合适的中心。

方法与分析

一项前瞻性多中心观察性研究,评估用于检测rAAA的院前智能手机分诊工具的诊断准确性。该研究将与伦敦救护车服务(LAS)合作在伦敦开展。通过评估十个关键参数开发了一个预测rAAA风险的逻辑评分,并通过对2005年至2010年2200例患者的救护车记录和医院事件统计数据进行逻辑回归分析进行回顾性验证。分诊工具集成到适用于主要智能手机平台的安全移动应用程序中。从该应用程序收集的关键参数将与每位患者每次就诊的最终医院出院诊断进行回顾性匹配。主要结果是评估rAAA分诊工具逻辑评分在前瞻性用作院前救护车临床医生的移动应用程序时的敏感性、特异性和阳性预测值。数据收集于2014年11月开始,该研究将在2年时间内招募至少1150例非连续患者。

伦理与传播

本研究已获得全面伦理批准。本研究结果将在同行评审出版物以及国际/国内会议上发表。

试验注册号

CPMS 16459;预结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e1/5093389/70694226361e/bmjopen2016011308f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验