Lewis Thomas L, Fothergill Rachael T, Karthikesalingam Alan
St George's Vascular Institute, St George's University of London, London, UK.
Clinical Audit & Research Unit, London Ambulance Service NHS Trust, 8-20 Pocock Street, London, UK.
BMJ Open. 2016 Oct 24;6(10):e011308. doi: 10.1136/bmjopen-2016-011308.
Rupture of an abdominal aortic aneurysm (rAAA) carries a considerable mortality rate and is often fatal. rAAA can be treated through open or endovascular surgical intervention and it is possible that more rapid access to definitive intervention might be a key aspect of improving mortality for rAAA. Diagnosis is not always straightforward with up to 42% of rAAA initially misdiagnosed, introducing potentially harmful delay. There is a need for an effective clinical decision support tool for accurate prehospital diagnosis and triage to enable transfer to an appropriate centre.
Prospective multicentre observational study assessing the diagnostic accuracy of a prehospital smartphone triage tool for detection of rAAA. The study will be conducted across London in conjunction with London Ambulance Service (LAS). A logistic score predicting the risk of rAAA by assessing ten key parameters was developed and retrospectively validated through logistic regression analysis of ambulance records and Hospital Episode Statistics data for 2200 patients from 2005 to 2010. The triage tool is integrated into a secure mobile app for major smartphone platforms. Key parameters collected from the app will be retrospectively matched with final hospital discharge diagnosis for each patient encounter. The primary outcome is to assess the sensitivity, specificity and positive predictive value of the rAAA triage tool logistic score in prospective use as a mob app for prehospital ambulance clinicians. Data collection started in November 2014 and the study will recruit a minimum of 1150 non-consecutive patients over a time period of 2 years.
Full ethical approval has been gained for this study. The results of this study will be disseminated in peer-reviewed publications, and international/national presentations.
CPMS 16459; pre-results.
腹主动脉瘤破裂(rAAA)死亡率相当高,往往是致命的。rAAA可通过开放手术或血管内手术干预进行治疗,更快地获得确定性干预可能是提高rAAA死亡率的关键因素。诊断并非总是一目了然,高达42%的rAAA最初会被误诊,从而导致潜在的有害延误。需要一种有效的临床决策支持工具来进行准确的院前诊断和分诊,以便转送至合适的中心。
一项前瞻性多中心观察性研究,评估用于检测rAAA的院前智能手机分诊工具的诊断准确性。该研究将与伦敦救护车服务(LAS)合作在伦敦开展。通过评估十个关键参数开发了一个预测rAAA风险的逻辑评分,并通过对2005年至2010年2200例患者的救护车记录和医院事件统计数据进行逻辑回归分析进行回顾性验证。分诊工具集成到适用于主要智能手机平台的安全移动应用程序中。从该应用程序收集的关键参数将与每位患者每次就诊的最终医院出院诊断进行回顾性匹配。主要结果是评估rAAA分诊工具逻辑评分在前瞻性用作院前救护车临床医生的移动应用程序时的敏感性、特异性和阳性预测值。数据收集于2014年11月开始,该研究将在2年时间内招募至少1150例非连续患者。
本研究已获得全面伦理批准。本研究结果将在同行评审出版物以及国际/国内会议上发表。
CPMS 16459;预结果。