Suppr超能文献

创伤患者院前分诊预测模型的建立与验证

Development and Validation of a Prediction Model for Prehospital Triage of Trauma Patients.

机构信息

Department of Traumatology, University Medical Center Utrecht, Utrecht, the Netherlands.

Department of Surgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands.

出版信息

JAMA Surg. 2019 May 1;154(5):421-429. doi: 10.1001/jamasurg.2018.4752.

Abstract

IMPORTANCE

Prehospital trauma triage protocols are used worldwide to get the right patient to the right hospital and thereby improve the chance of survival and avert lifelong disabilities. The American College of Surgeons Committee on Trauma set target levels for undertriage rates of less than 5%. None of the existing triage protocols has been able to achieve this target in isolation.

OBJECTIVE

To develop and validate a new prehospital trauma triage protocol to improve current triage rates.

DESIGN, SETTING, AND PARTICIPANTS: In this multicenter cohort study, all patients with trauma who were 16 years and older and transported to a trauma center in 2 different regions of the Netherlands were included in the analysis. Data were collected from January 1, 2012, through June 30, 2014, in the Central Netherlands region for the design data cohort and from January 1 through December 31, 2015, in the Brabant region for the validation cohort. Data were analyzed from May 3, 2017, through July 19, 2018.

MAIN OUTCOMES AND MEASURES

A new prediction model was developed in the Central Netherlands region based on prehospital predictors associated with severe injury. Severe injury was defined as an Injury Severity Score greater than 15. A full-model strategy with penalized maximum likelihood estimation was used to construct a model with 8 predictors that were chosen based on clinical reasoning. Accuracy of the developed prediction model was assessed in terms of discrimination and calibration. The model was externally validated in the Brabant region.

RESULTS

Using data from 4950 patients with trauma from the Central Netherlands region for the design data set (58.3% male; mean [SD] age, 47 [21] years) and 6859 patients for the validation Brabant region (52.2% male; mean [SD] age, 51 [22] years), the following 8 significant predictors were selected for the prediction model: age; systolic blood pressure; Glasgow Coma Scale score; mechanism criteria; penetrating injury to the head, thorax, or abdomen; signs and/or symptoms of head or neck injury; expected injury in the Abbreviated Injury Scale thorax region; and expected injury in 2 or more Abbreviated Injury Scale regions. The prediction model showed a C statistic of 0.823 (95% CI, 0.813-0.832) and good calibration. The cutoff point with a minimum specificity of 50.0% (95% CI, 49.3%-50.7%) led to a sensitivity of 88.8% (95% CI, 87.5%-90.0%). External validation showed a C statistic of 0.831 (95% CI, 0.814-0.848) and adequate calibration.

CONCLUSIONS AND RELEVANCE

The new prehospital trauma triage prediction model may lower undertriage rates to approximately 10% with an overtriage rate of 50%. The next step should be to implement this prediction model with the use of a mobile app for emergency medical services professionals.

摘要

重要性

创伤前院外分诊方案在全球范围内用于将合适的患者送往合适的医院,从而提高生存机会并避免终身残疾。美国外科医师学院创伤委员会设定了低分诊率低于 5%的目标。现有的分诊方案都无法单独达到这一目标。

目的

开发和验证一种新的创伤前院外分诊方案,以提高目前的分诊率。

设计、地点和参与者: 在这项多中心队列研究中,所有年龄在 16 岁及以上并被送往荷兰两个不同地区创伤中心的创伤患者都被纳入分析。数据收集于 2012 年 1 月 1 日至 2014 年 6 月 30 日在荷兰中部地区进行,设计数据队列,2015 年 1 月 1 日至 12 月 31 日在布拉邦特地区进行验证队列。数据分析于 2017 年 5 月 3 日至 2018 年 7 月 19 日进行。

主要结果和措施

在荷兰中部地区,根据与严重损伤相关的院外预测因素,开发了一种新的预测模型。严重损伤定义为损伤严重程度评分大于 15。使用基于临床推理的惩罚最大似然估计的全模型策略构建了一个包含 8 个预测因子的模型,这些预测因子是根据临床推理选择的。通过区分度和校准来评估所开发的预测模型的准确性。该模型在布拉邦特地区进行了外部验证。

结果

使用荷兰中部地区设计数据集的 4950 名创伤患者的数据(58.3%为男性;平均[标准差]年龄为 47[21]岁)和 6859 名验证患者的数据(52.2%为男性;平均[标准差]年龄为 51[22]岁),选择了以下 8 个显著预测因子用于预测模型:年龄;收缩压;格拉斯哥昏迷评分;机制标准;头部、胸部或腹部的穿透性损伤;头部或颈部损伤的迹象和/或症状;预期损伤在简明损伤量表胸部区域;以及在 2 个或更多简明损伤量表区域的预期损伤。该预测模型的 C 统计量为 0.823(95%置信区间,0.813-0.832),校准效果良好。最小特异性为 50.0%(95%置信区间,49.3%-50.7%)的切点导致敏感性为 88.8%(95%置信区间,87.5%-90.0%)。外部验证显示 C 统计量为 0.831(95%置信区间,0.814-0.848),校准效果尚可。

结论和相关性

新的创伤前院外分诊预测模型可能将低分诊率降低到约 10%,而高分诊率为 50%。下一步应该是使用急救医疗服务专业人员的移动应用程序实施该预测模型。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验