Prevedel Robert, Verhoef Aart J, Pernía-Andrade Alejandro J, Weisenburger Siegfried, Huang Ben S, Nöbauer Tobias, Fernández Alma, Delcour Jeroen E, Golshani Peyman, Baltuska Andrius, Vaziri Alipasha
Research Institute of Molecular Pathology, Vienna, Austria.
Max F. Perutz Laboratories Support GmbH, University of Vienna, Vienna, Austria.
Nat Methods. 2016 Dec;13(12):1021-1028. doi: 10.1038/nmeth.4040. Epub 2016 Oct 31.
Although whole-organism calcium imaging in small and semi-transparent animals has been demonstrated, capturing the functional dynamics of large-scale neuronal circuits in awake behaving mammals at high speed and resolution has remained one of the main frontiers in systems neuroscience. Here we present a method based on light sculpting that enables unbiased single- and dual-plane high-speed (up to 160 Hz) calcium imaging as well as in vivo volumetric calcium imaging of a mouse cortical column (0.5 mm × 0.5 mm × 0.5 mm) at single-cell resolution and fast volume rates (3-6 Hz). We achieved this by tailoring the point-spread function of our microscope to the structures of interest while maximizing the signal-to-noise ratio using a home-built fiber laser amplifier with pulses that are synchronized to the imaging voxel speed. This enabled in vivo recording of calcium dynamics of several thousand neurons across cortical layers and in the hippocampus of awake behaving mice.
尽管在小型半透明动物中已证明了全生物体钙成像,但在清醒行为的哺乳动物中以高速和高分辨率捕获大规模神经元回路的功能动态,仍然是系统神经科学的主要前沿领域之一。在此,我们提出一种基于光塑形的方法,该方法能够实现无偏的单平面和双平面高速(高达160赫兹)钙成像,以及以单细胞分辨率和快速体速率(3 - 6赫兹)对小鼠皮质柱(0.5毫米×0.5毫米×0.5毫米)进行体内体积钙成像。我们通过将显微镜的点扩散函数调整为感兴趣的结构,同时使用自制的光纤激光放大器,使脉冲与成像体素速度同步,从而最大化信噪比,实现了这一目标。这使得在清醒行为小鼠的整个皮质层和海马体中,能够对数千个神经元的钙动态进行体内记录。