Spiegel Daniel P, Baldwin Alex S, Hess Robert F
McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, Québec, Canada 2Traumatic Brain Injury Program, The Research Institute of the McGill University Health Center, Montréal, Québec, Canada.
McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montréal, Québec, Canada.
Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5810-5817. doi: 10.1167/iovs.16-20438.
Single vision occurs through a combination of fusion and suppression. When neither mechanism takes place, we experience diplopia. Under normal viewing conditions, the perceptual state depends on the spatial scale and interocular disparity. The purpose of this study was to examine the three perceptual states in human participants with normal and amblyopic vision.
Participants viewed two dichoptically separated horizontal blurred edges with an opposite tilt (2.35°) and indicated their binocular percept: "one flat edge," "one tilted edge," or "two edges." The edges varied with scale (fine 4 min arc and coarse 32 min arc), disparity, and interocular contrast. We investigated how the binocular interactions vary in amblyopic (visual acuity [VA] > 0.2 logMAR, n = 4) and normal vision (VA ≤ 0 logMAR, n = 4) under interocular variations in stimulus contrast and luminance.
In amblyopia, despite the established sensory dominance of the fellow eye, fusion prevails at the coarse scale and small disparities (75%). We also show that increasing the relative contrast to the amblyopic eye enhances the probability of fusion at the fine scale (from 18% to 38%), and leads to a reversal of the sensory dominance at coarse scale. In normal vision we found that interocular luminance imbalances disturbed binocular combination only at the fine scale in a way similar to that seen in amblyopia.
Our results build upon the growing evidence that the amblyopic visual system is binocular and further show that the suppressive mechanisms rendering the amblyopic system functionally monocular are scale dependent.
单眼视觉通过融合和抑制的结合而产生。当这两种机制都不发生时,我们会体验到复视。在正常观看条件下,感知状态取决于空间尺度和双眼视差。本研究的目的是检查具有正常视力和弱视视力的人类参与者的三种感知状态。
参与者观看两个双眼分离的水平模糊边缘,其倾斜方向相反(2.35°),并指出他们的双眼感知:“一条平边”、“一条倾斜边”或“两条边”。边缘随尺度(精细4分视角和粗糙32分视角)、视差和双眼对比度而变化。我们研究了在刺激对比度和亮度的双眼变化下,弱视(视力[VA]>0.2 logMAR,n = 4)和正常视力(VA≤0 logMAR,n = 4)中双眼相互作用如何变化。
在弱视中,尽管健眼已确立感觉优势,但在粗糙尺度和小视差(75%)下融合占主导。我们还表明,增加弱视眼的相对对比度会提高精细尺度下融合的概率(从18%提高到38%),并导致粗糙尺度下感觉优势的逆转。在正常视力中,我们发现双眼亮度不平衡仅在精细尺度上以类似于弱视中所见的方式干扰双眼组合。
我们的结果基于越来越多的证据,即弱视视觉系统是双眼的,并进一步表明使弱视系统在功能上成为单眼的抑制机制是依赖尺度的。