Suppr超能文献

中间丝:结构与组装

Intermediate Filaments: Structure and Assembly.

作者信息

Herrmann Harald, Aebi Ueli

机构信息

Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany.

Biozentrum, University of Basel, CH-4056 Basel, Switzerland.

出版信息

Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):a018242. doi: 10.1101/cshperspect.a018242.

Abstract

Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.

摘要

中间丝(IF)超基因家族的蛋白质是普遍存在的结构成分,它们以细胞类型特异性的方式构成动物组织中的细胞骨架本身。所有IF蛋白都呈现出明显有组织的、延伸的α-螺旋构象,易于形成双链卷曲螺旋,这些是这些高度灵活、抗应力的细胞骨架细丝的基本构建块。IF蛋白带电量很高,因此是具有多种功能的通用聚两性电解质。以波形蛋白、角蛋白和核纤层蛋白为例,我们概述了它们的分子和结构参数。这些反过来又证明了IF蛋白能够形成不同的、高度多样的超分子组装体和生物材料,例如在脊椎动物的内核膜、整个细胞质以及毛发和指甲等高度复杂的细胞外附属物中发现的那些。最终,我们的目标是为更合理地理解IF基因中的错义突变对细胞功能的直接影响以及它们对由其引起的众多IF疾病发展的深远影响奠定基础。

相似文献

1
Intermediate Filaments: Structure and Assembly.
Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):a018242. doi: 10.1101/cshperspect.a018242.
3
Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks.
Curr Opin Cell Biol. 2015 Feb;32:82-91. doi: 10.1016/j.ceb.2015.01.001. Epub 2015 Jan 23.
4
Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13620-5. doi: 10.1073/pnas.1206836109. Epub 2012 Aug 6.
6
Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases.
Anat Histol Embryol. 2023 Sep;52(5):655-672. doi: 10.1111/ahe.12937. Epub 2023 Jun 16.
8
Molecular architecture of intermediate filaments.
Bioessays. 2003 Mar;25(3):243-51. doi: 10.1002/bies.10246.
9
Recent insight into intermediate filament structure.
Curr Opin Cell Biol. 2021 Feb;68:132-143. doi: 10.1016/j.ceb.2020.10.001. Epub 2020 Nov 12.
10
Characterization of distinct early assembly units of different intermediate filament proteins.
J Mol Biol. 1999 Mar 12;286(5):1403-20. doi: 10.1006/jmbi.1999.2528.

引用本文的文献

1
The important interplay between metal ions and the intermediate filament protein vimentin.
J Biol Inorg Chem. 2025 Sep 6. doi: 10.1007/s00775-025-02124-x.
3
Reconstitution of lamin assembly on nuclear pore complex-containing membranes.
bioRxiv. 2025 Jul 30:2025.07.28.667287. doi: 10.1101/2025.07.28.667287.
7
Surface keratin 1, a tumor-selective peptide target in human triple-negative breast cancer.
Sci Rep. 2025 Jul 1;15(1):21644. doi: 10.1038/s41598-025-05351-z.
8
Continuous self-repair protects vimentin intermediate filaments from fragmentation.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2417660122. doi: 10.1073/pnas.2417660122. Epub 2025 Jun 13.
9
Strategies and scheming: the war between PRRSV and host cells.
Virol J. 2025 Jun 11;22(1):191. doi: 10.1186/s12985-025-02685-y.

本文引用的文献

1
Actin and Actin-Binding Proteins.
Cold Spring Harb Perspect Biol. 2016 Aug 1;8(8):a018226. doi: 10.1101/cshperspect.a018226.
2
Composite bottlebrush mechanics: α-internexin fine-tunes neurofilament network properties.
Soft Matter. 2015 Aug 7;11(29):5839-49. doi: 10.1039/c5sm00662g.
4
Emergent properties of composite semiflexible biopolymer networks.
Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.
5
Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks.
Curr Opin Cell Biol. 2015 Feb;32:82-91. doi: 10.1016/j.ceb.2015.01.001. Epub 2015 Jan 23.
6
Intermediate filament structure: the bottom-up approach.
Curr Opin Cell Biol. 2015 Feb;32:65-72. doi: 10.1016/j.ceb.2014.12.007. Epub 2015 Jan 14.
7
Evolutionary aspects in intermediate filament proteins.
Curr Opin Cell Biol. 2015 Feb;32:48-55. doi: 10.1016/j.ceb.2014.12.009. Epub 2015 Jan 8.
8
Direct observation of subunit exchange along mature vimentin intermediate filaments.
Biophys J. 2014 Dec 16;107(12):2923-2931. doi: 10.1016/j.bpj.2014.09.050.
10
Cytoskeletal crosstalk: when three different personalities team up.
Curr Opin Cell Biol. 2015 Feb;32:39-47. doi: 10.1016/j.ceb.2014.10.005. Epub 2014 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验