Suppr超能文献

复合半柔性生物聚合物网络的涌现特性。

Emergent properties of composite semiflexible biopolymer networks.

作者信息

Jensen Mikkel H, Morris Eliza J, Goldman Robert D, Weitz David A

机构信息

a School of Engineering and Applied Sciences ; Harvard University ; Cambridge , Massachusetts USA.

出版信息

Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.

Abstract

The semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown, necessitating the study of composite networks using mixtures of semiflexible biopolymers. We employ bulk rheology in a simplified in vitro system to uncover the fundamental mechanical interactions between networks of the 2 semiflexible polymers, F-actin and vimentin IF. Surprisingly, co-polymerization of actin and vimentin can produce composite networks either stronger or weaker than pure F-actin networks. We show that this effect occurs through steric constraints imposed by IF on F-actin during network formation and filament crosslinking, highlighting novel emergent behavior in composite semiflexible networks.

摘要

半柔性聚合物丝状肌动蛋白(F-肌动蛋白)和中间丝(IF)都在细胞内形成复杂网络,并且共同构成细胞硬度的关键决定因素。虽然F-肌动蛋白网络与刚性微管的力学特性已得到表征,但F-肌动蛋白网络与IF网络之间的相互作用在很大程度上尚不清楚,因此有必要使用半柔性生物聚合物混合物来研究复合网络。我们在一个简化的体外系统中采用本体流变学方法,以揭示两种半柔性聚合物(F-肌动蛋白和波形蛋白IF)网络之间的基本力学相互作用。令人惊讶的是,肌动蛋白和波形蛋白的共聚可产生比纯F-肌动蛋白网络更强或更弱的复合网络。我们表明,这种效应是通过IF在网络形成和细丝交联过程中对F-肌动蛋白施加的空间位阻约束而产生的,突出了复合半柔性网络中的新型涌现行为。

相似文献

1
Emergent properties of composite semiflexible biopolymer networks.
Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.
2
Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2115217119. doi: 10.1073/pnas.2115217119. Epub 2022 Mar 2.
3
Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
J Cell Biol. 1991 Apr;113(1):155-60. doi: 10.1083/jcb.113.1.155.
6
Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
Biochim Biophys Acta Mol Cell Res. 2020 Aug;1867(8):118726. doi: 10.1016/j.bbamcr.2020.118726. Epub 2020 Apr 19.
7
A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin.
J Biol Chem. 2006 Oct 13;281(41):30393-9. doi: 10.1074/jbc.M605452200. Epub 2006 Aug 9.
9
Reconstitution of cytolinker-mediated crosstalk between actin and vimentin.
Eur J Cell Biol. 2024 Jun;103(2):151403. doi: 10.1016/j.ejcb.2024.151403. Epub 2024 Mar 12.
10

引用本文的文献

1
Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings.
Nanomaterials (Basel). 2025 May 9;15(10):716. doi: 10.3390/nano15100716.
2
Interspecies interactions in dual, fibrous gels enable control of gel structure and rheology.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2423293122. doi: 10.1073/pnas.2423293122. Epub 2025 May 6.
4
How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies.
Biophys Rev (Melville). 2024 Jun 3;5(2):021307. doi: 10.1063/5.0198119. eCollection 2024 Jun.
5
Multiscale architecture: Mechanics of composite cytoskeletal networks.
Biophys Rev (Melville). 2022 Aug 26;3(3):031304. doi: 10.1063/5.0099405. eCollection 2022 Sep.
7
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics.
Cells. 2021 Jul 27;10(8):1905. doi: 10.3390/cells10081905.
8
The vimentin cytoskeleton: when polymer physics meets cell biology.
Phys Biol. 2020 Dec 1;18(1):011001. doi: 10.1088/1478-3975/abbcc2.
10
Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity.
Cell Mol Life Sci. 2020 Apr;77(7):1345-1355. doi: 10.1007/s00018-019-03328-6. Epub 2019 Oct 11.

本文引用的文献

1
Mechanism of calponin stabilization of cross-linked actin networks.
Biophys J. 2014 Feb 18;106(4):793-800. doi: 10.1016/j.bpj.2013.12.042.
3
The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics.
Biophys J. 2013 Oct 1;105(7):1562-8. doi: 10.1016/j.bpj.2013.08.037.
5
Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia.
J Cell Biol. 2010 May 3;189(3):541-56. doi: 10.1083/jcb.200909113. Epub 2010 Apr 26.
6
Origins of elasticity in intermediate filament networks.
Phys Rev Lett. 2010 Feb 5;104(5):058101. doi: 10.1103/PhysRevLett.104.058101. Epub 2010 Feb 1.
7
Microrheology of microtubule solutions and actin-microtubule composite networks.
Phys Rev Lett. 2009 May 8;102(18):188303. doi: 10.1103/PhysRevLett.102.188303. Epub 2009 May 7.
8
Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry.
J Mol Biol. 2009 Apr 24;388(1):133-43. doi: 10.1016/j.jmb.2009.03.005. Epub 2009 Mar 10.
9
A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin.
J Biol Chem. 2007 Jun 22;282(25):18563-18572. doi: 10.1074/jbc.M701063200. Epub 2007 Apr 2.
10
Viscoelasticity of isotropically cross-linked actin networks.
Phys Rev Lett. 2007 Feb 23;98(8):088103. doi: 10.1103/PhysRevLett.98.088103. Epub 2007 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验