Grover Rahul, Fischer Janine, Schwarz Friedrich W, Walter Wilhelm J, Schwille Petra, Diez Stefan
Center for Molecular Bioengineering (B CUBE), Technische Universität Dresden, 01069 Dresden, Germany.
Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7185-E7193. doi: 10.1073/pnas.1611398113. Epub 2016 Nov 1.
In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors' anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted "membrane-anchored" gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor-cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport.
在真核细胞中,膜泡和细胞器由多种驱动蛋白协同运输。这些驱动蛋白,如驱动蛋白-1,在体外作为单个分子或牢固附着于非生物底物的集合体时,已得到充分表征。然而,对于通过膜锚定驱动蛋白进行的集体运输,即附着于流体脂质双层的驱动蛋白的运输,人们了解甚少。在这里,我们研究了驱动蛋白锚定到脂质双层对集体运输特性的影响。我们使用带有链霉亲和素结合肽标签的截短驱动蛋白-1构建了“膜锚定”滑行运动分析,该标签可附着于负载链霉亲和素的支撑脂质双层。我们发现,在ATP存在的情况下,扩散的驱动蛋白-1推动微管运动。值得注意的是,我们发现微管的滑行速度强烈依赖于驱动蛋白的数量及其在脂质双层中的扩散率。微管滑行速度随着驱动蛋白密度和膜粘度的增加而增加,最高可达单个驱动蛋白的步移速度。这一发现与传统的滑行运动分析相反,在传统分析中,表面固定的驱动蛋白-1的密度在很宽的范围内不会影响微管速度。我们推测,膜锚定驱动蛋白的运输效率降低是因为它们在脂质双层中发生了滑动,我们使用单分子荧光显微镜直接观察到了这种效应。我们的结果说明了驱动蛋白与货物耦合的重要性,这可能为细胞提供了一种额外的调节货物运输效率的方式。