Suppr超能文献

快速和慢速驱动蛋白群体的运输揭示了对体内功能很重要的新的家族依赖性运动特征。

Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.

作者信息

Arpağ Göker, Shastry Shankar, Hancock William O, Tüzel Erkan

机构信息

Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.

Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania.

出版信息

Biophys J. 2014 Oct 21;107(8):1896-1904. doi: 10.1016/j.bpj.2014.09.009.

Abstract

Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.

摘要

细胞内货物运输通常涉及多种运动蛋白类型,它们要么具有相反的方向性,要么具有相同的方向性但速度不同。尽管在单分子水平上表征驱动蛋白运动蛋白方面已经取得了重大进展,但预测它们的整体行为具有挑战性,需要实验和建模之间的紧密耦合来揭示潜在的运动蛋白行为。为了了解附着在同一货物上的多种驱动蛋白如何协调它们的运动,我们使用了来自驱动蛋白-1、-2、-3、-5和-7家族的运动蛋白的成对混合物进行微管滑动试验,这些运动蛋白经过工程改造,具有相同的运行长度和表面附着。使用均匀的运动蛋白密度,并测量了不同比例的快、慢运动蛋白的微管滑动速度。开发了一种粗粒度的滑动试验计算模型,发现该模型能够重现实验结果。模拟纳入了已发表的力依赖速度和运行长度,以及结合在同一微管上的运动蛋白之间的机械相互作用。模拟结果表明,脱离的力依赖性是决定多运动蛋白试验中滑动速度的关键参数,而运动蛋白的柔顺性、表面密度和失速力都起着最小的作用。模拟还提供了力依赖解离速率的估计值,表明驱动蛋白-1以及有丝分裂运动蛋白驱动蛋白-5和-7在负载下保持与微管的结合,而驱动蛋白-2和-3很容易脱离。这项工作揭示了多运动蛋白集合中意想不到的运动蛋白行为,并阐明了在细胞中执行不同机械任务的驱动蛋白之间的功能差异。

相似文献

3
Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport.
Biophys J. 2018 Jan 23;114(2):400-409. doi: 10.1016/j.bpj.2017.11.016.
4
Multiple kinesins induce tension for smooth cargo transport.
Elife. 2019 Oct 31;8:e50974. doi: 10.7554/eLife.50974.
5
Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.
Biophys J. 2019 Mar 19;116(6):1115-1126. doi: 10.1016/j.bpj.2019.01.036. Epub 2019 Feb 5.
6
Multimotor transport in a system of active and inactive kinesin-1 motors.
Biophys J. 2014 Jul 15;107(2):365-372. doi: 10.1016/j.bpj.2014.06.014.
7
A dynamical model of kinesin-microtubule motility assays.
Biophys J. 2001 Jun;80(6):2515-26. doi: 10.1016/S0006-3495(01)76223-6.
8
Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions.
Phys Biol. 2008 Nov 24;5(4):046004. doi: 10.1088/1478-3975/5/4/046004.
9
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7185-E7193. doi: 10.1073/pnas.1611398113. Epub 2016 Nov 1.
10

引用本文的文献

1
Ndc80 complex, a conserved coupler for kinetochore-microtubule motility, is a sliding molecular clutch.
Sci Adv. 2025 Sep 5;11(36):eadx0005. doi: 10.1126/sciadv.adx0005. Epub 2025 Sep 3.
2
Sculpting excitable membranes: voltage-gated ion channel delivery and distribution.
Nat Rev Neurosci. 2025 Apr 2. doi: 10.1038/s41583-025-00917-2.
4
Maternal ELL3 loss-of-function leads to oocyte aneuploidy and early miscarriage.
Nat Struct Mol Biol. 2025 Feb;32(2):381-392. doi: 10.1038/s41594-024-01471-8. Epub 2025 Jan 16.
6
Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles.
J Control Release. 2024 Oct;374:349-368. doi: 10.1016/j.jconrel.2024.07.043. Epub 2024 Aug 22.
7
On the use of thermal forces to probe kinesin's response to force.
Front Mol Biosci. 2023 Oct 31;10:1260914. doi: 10.3389/fmolb.2023.1260914. eCollection 2023.
8
KIF1A is kinetically tuned to be a superengaging motor under hindering loads.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2216903120. doi: 10.1073/pnas.2216903120. Epub 2023 Jan 4.
10
Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors.
PLoS Comput Biol. 2022 Jun 8;18(6):e1010217. doi: 10.1371/journal.pcbi.1010217. eCollection 2022 Jun.

本文引用的文献

1
Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips.
Nat Cell Biol. 2013 Sep;15(9):1079-1088. doi: 10.1038/ncb2831. Epub 2013 Aug 18.
2
Bifurcation of velocity distributions in cooperative transport of filaments by fast and slow motors.
Biophys J. 2013 Feb 5;104(3):666-76. doi: 10.1016/j.bpj.2012.11.3834.
3
4
Cooperative responses of multiple kinesins to variable and constant loads.
J Biol Chem. 2012 Jan 27;287(5):3357-65. doi: 10.1074/jbc.M111.296582. Epub 2011 Dec 9.
5
Interhead tension determines processivity across diverse N-terminal kinesins.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16253-8. doi: 10.1073/pnas.1102628108. Epub 2011 Sep 12.
6
Productive cooperation among processive motors depends inversely on their mechanochemical efficiency.
Biophys J. 2011 Jul 20;101(2):386-95. doi: 10.1016/j.bpj.2011.05.067.
9
Coupling between motor proteins determines dynamic behaviors of motor protein assemblies.
Phys Chem Chem Phys. 2010 Sep 21;12(35):10398-405. doi: 10.1039/c0cp00117a. Epub 2010 Jun 25.
10
Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport.
Curr Biol. 2010 Apr 27;20(8):697-702. doi: 10.1016/j.cub.2010.02.058. Epub 2010 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验