Arpağ Göker, Shastry Shankar, Hancock William O, Tüzel Erkan
Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.
Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania.
Biophys J. 2014 Oct 21;107(8):1896-1904. doi: 10.1016/j.bpj.2014.09.009.
Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.
细胞内货物运输通常涉及多种运动蛋白类型,它们要么具有相反的方向性,要么具有相同的方向性但速度不同。尽管在单分子水平上表征驱动蛋白运动蛋白方面已经取得了重大进展,但预测它们的整体行为具有挑战性,需要实验和建模之间的紧密耦合来揭示潜在的运动蛋白行为。为了了解附着在同一货物上的多种驱动蛋白如何协调它们的运动,我们使用了来自驱动蛋白-1、-2、-3、-5和-7家族的运动蛋白的成对混合物进行微管滑动试验,这些运动蛋白经过工程改造,具有相同的运行长度和表面附着。使用均匀的运动蛋白密度,并测量了不同比例的快、慢运动蛋白的微管滑动速度。开发了一种粗粒度的滑动试验计算模型,发现该模型能够重现实验结果。模拟纳入了已发表的力依赖速度和运行长度,以及结合在同一微管上的运动蛋白之间的机械相互作用。模拟结果表明,脱离的力依赖性是决定多运动蛋白试验中滑动速度的关键参数,而运动蛋白的柔顺性、表面密度和失速力都起着最小的作用。模拟还提供了力依赖解离速率的估计值,表明驱动蛋白-1以及有丝分裂运动蛋白驱动蛋白-5和-7在负载下保持与微管的结合,而驱动蛋白-2和-3很容易脱离。这项工作揭示了多运动蛋白集合中意想不到的运动蛋白行为,并阐明了在细胞中执行不同机械任务的驱动蛋白之间的功能差异。