Silva O N, de la Fuente-Núñez C, Haney E F, Fensterseifer I C M, Ribeiro S M, Porto W F, Brown P, Faria-Junior C, Rezende T M B, Moreno S E, Lu T K, Hancock R E W, Franco O L
Departamento de Biologia, Instituto de Ciências Biológicas, Programa de pós-graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brazil.
S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
Sci Rep. 2016 Nov 2;6:35465. doi: 10.1038/srep35465.
Antibiotic-resistant infections are predicted to kill 10 million people per year by 2050, costing the global economy $100 trillion. Therefore, there is an urgent need to develop alternative technologies. We have engineered a synthetic peptide called clavanin-MO, derived from a marine tunicate antimicrobial peptide, which exhibits potent antimicrobial and immunomodulatory properties both in vitro and in vivo. The peptide effectively killed a panel of representative bacterial strains, including multidrug-resistant hospital isolates. Antimicrobial activity of the peptide was demonstrated in animal models, reducing bacterial counts by six orders of magnitude, and contributing to infection clearance. In addition, clavanin-MO was capable of modulating innate immunity by stimulating leukocyte recruitment to the site of infection, and production of immune mediators GM-CSF, IFN-γ and MCP-1, while suppressing an excessive and potentially harmful inflammatory response by increasing synthesis of anti-inflammatory cytokines such as IL-10 and repressing the levels of pro-inflammatory cytokines IL-12 and TNF-α. Finally, treatment with the peptide protected mice against otherwise lethal infections caused by both Gram-negative and -positive drug-resistant strains. The peptide presented here directly kills bacteria and further helps resolve infections through its immune modulatory properties. Peptide anti-infective therapeutics with combined antimicrobial and immunomodulatory properties represent a new approach to treat antibiotic-resistant infections.
预计到2050年,抗生素耐药性感染每年将导致1000万人死亡,给全球经济造成100万亿美元的损失。因此,迫切需要开发替代技术。我们设计了一种名为clavanin-MO的合成肽,它源自一种海洋被囊动物抗菌肽,在体外和体内均表现出强大的抗菌和免疫调节特性。该肽有效地杀死了一组代表性细菌菌株,包括耐多药医院分离株。在动物模型中证明了该肽的抗菌活性,使细菌数量减少了六个数量级,并有助于清除感染。此外,clavanin-MO能够通过刺激白细胞募集到感染部位以及产生免疫介质GM-CSF、IFN-γ和MCP-1来调节先天免疫,同时通过增加抗炎细胞因子如IL-10的合成和抑制促炎细胞因子IL-12和TNF-α的水平来抑制过度且可能有害的炎症反应。最后,用该肽治疗可保护小鼠免受革兰氏阴性和阳性耐药菌株引起的致命感染。本文介绍的这种肽可直接杀死细菌,并通过其免疫调节特性进一步帮助解决感染问题。具有抗菌和免疫调节特性的肽类抗感染疗法代表了一种治疗抗生素耐药性感染的新方法。
Clin Orthop Relat Res. 2015-9
Front Immunol. 2021
Antimicrob Agents Chemother. 2015-3
Antimicrob Agents Chemother. 2007-11
Front Microbiol. 2025-4-23
Front Microbiol. 2024-12-20
Molecules. 2023-12-29
J Chem Theory Comput. 2008-3
Antimicrob Agents Chemother. 2015-4
Antimicrob Agents Chemother. 2015-3
Int J Nanomedicine. 2014-10-31
J Comput Chem. 2014-10-15