Ahaliabadeh Zahra, Miikkulainen Ville, Mäntymäki Miia, Mousavihashemi Seyedabolfazl, Yao Lide, Jiang Hua, Huotari Simo, Kankaanpää Timo, Kallio Tanja, Colalongo Mattia
Department of Chemistry and Materials Science (CMAT), School of Chemical Engineering, Aalto University, Espoo, 02150, Finland.
Department of Chemistry, University of Helsinki, Helsinki, 00014, Finland.
ChemSusChem. 2024 Dec 6;17(23):e202400272. doi: 10.1002/cssc.202400272. Epub 2024 Aug 12.
The widespread use of high-capacity Ni-rich layered oxides such as LiNiMnCoO (NMC811), in lithium-ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life. Here, we introduce an amorphous lithium titanate (LTO) coating via atomic layer deposition (ALD), not only covering NMC811 surfaces but also penetrating cavities and grain boundaries. As NMC811 electrodes suffer from low structural stability during charge and discharge, We combined electrochemistry, operando X-ray diffraction (XRD), and dilatometry to understand structural changes and the coating protective effects. XRD reveals significant structural evolution during delithiation for uncoated NMC811. The highly reversible phase change in coated NMC811 highlights enhanced bulk structure stability. The LTO coating retards NMC811 degradation, boosting capacity retention from 86 % to 93 % after 140 cycles. This study underscores the importance of grain boundary engineering for Ni-rich layered oxide electrode stability and the interplay of chemical and mechanical factors in battery aging.
高容量富镍层状氧化物如LiNiMnCoO(NMC811)在锂离子电池中的广泛应用受到阻碍,因为在运行过程中会出现实际容量损失和工作电压降低的情况。老化会导致NMC811颗粒出现缺陷,影响其电化学性能。表面改性为提高循环寿命提供了一种很有前景的方法。在此,我们通过原子层沉积(ALD)引入了一种非晶态钛酸锂(LTO)涂层,该涂层不仅覆盖了NMC811的表面,还渗透到了孔洞和晶界中。由于NMC811电极在充放电过程中结构稳定性较差,我们结合电化学、原位X射线衍射(XRD)和膨胀测量法来了解结构变化以及涂层的保护作用。XRD显示,未涂层的NMC811在脱锂过程中发生了显著的结构演变。涂层NMC811中高度可逆的相变突出了其整体结构稳定性的增强。LTO涂层延缓了NMC811的降解,使140次循环后的容量保持率从86%提高到了93%。这项研究强调了晶界工程对于富镍层状氧化物电极稳定性的重要性,以及化学和机械因素在电池老化过程中的相互作用。