Suppr超能文献

致病性酵母正平滑假丝酵母通过两个亲本物种间的独立杂交产生的多种起源

Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species.

作者信息

Schröder Markus S, Martinez de San Vicente Kontxi, Prandini Tâmara H R, Hammel Stephen, Higgins Desmond G, Bagagli Eduardo, Wolfe Kenneth H, Butler Geraldine

机构信息

School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.

Instituto de Biociências, UNESP - Univ Estadual Paulista, Botucatu, Sao Paulo, Brazil.

出版信息

PLoS Genet. 2016 Nov 2;12(11):e1006404. doi: 10.1371/journal.pgen.1006404. eCollection 2016 Nov.

Abstract

Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.

摘要

不同物种之间的交配会产生杂种,这些杂种通常是无性的且以二倍体形式存在,但也可能导致新物种的形成。在此,我们报告了致病性酵母正拟平滑假丝酵母(Candida orthopsilosis)27个分离株的基因组序列。我们发现,大多数分离株是二倍体杂种,是两个未知亲本物种(A和B)交配的产物,这两个亲本物种在序列上有5%的差异。分离株在A和B之间的同质化程度差异很大,使其基因组成为高度杂合区域与纯合区域相间分布的镶嵌体。对基因组中A和B来源部分的单核苷酸多态性(SNP)进行单独的系统发育分析,得到了分离株几乎相同的树状图,有四个主要分支。然而,在交配型位点存在两种相互排斥的基因型组合,以及诊断分支间交配的重组线粒体基因组,表明正拟平滑假丝酵母物种并非有单一的进化起源,而是至少通过亲本A和B之间的四次独立种间杂交形成的。较老的杂种失去了更多的杂合性。我们还鉴定出两个基因组完全来自亲本A的纯合分离株,它们是纯的非杂种菌株。同一个杂交物种从多个独立杂交事件中平行出现的情况在植物进化中很常见,但在致病真菌中记录较少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fae/5091853/d822a9094546/pgen.1006404.g001.jpg

相似文献

1
Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species.
PLoS Genet. 2016 Nov 2;12(11):e1006404. doi: 10.1371/journal.pgen.1006404. eCollection 2016 Nov.
2
The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis.
PLoS Genet. 2015 Oct 30;11(10):e1005626. doi: 10.1371/journal.pgen.1005626. eCollection 2015 Oct.
3
Genomic evidence for a hybrid origin of the yeast opportunistic pathogen Candida albicans.
BMC Biol. 2020 May 6;18(1):48. doi: 10.1186/s12915-020-00776-6.
6
Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens.
BMC Biol. 2023 May 11;21(1):105. doi: 10.1186/s12915-023-01608-z.
7
Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes.
Mol Biol Evol. 2019 Dec 1;36(12):2861-2877. doi: 10.1093/molbev/msz177.
9
Origin of fungal hybrids with pathogenic potential from warm seawater environments.
Nat Commun. 2023 Oct 30;14(1):6919. doi: 10.1038/s41467-023-42679-4.
10
Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples.
PLoS Pathog. 2021 Mar 31;17(3):e1009138. doi: 10.1371/journal.ppat.1009138. eCollection 2021 Mar.

引用本文的文献

3
Insights into the origin, hybridisation and adaptation of Candida metapsilosis hybrid pathogens.
PLoS Pathog. 2025 Jan 17;21(1):e1012864. doi: 10.1371/journal.ppat.1012864. eCollection 2025 Jan.
4
Threats from the complex: the surge of multidrug resistance and a hotbed for new emerging pathogens.
Microbiol Mol Biol Rev. 2024 Dec 18;88(4):e0002923. doi: 10.1128/mmbr.00029-23. Epub 2024 Nov 7.
5
Hybrids unleashed: exploring the emergence and genomic insights of pathogenic yeast hybrids.
Curr Opin Microbiol. 2024 Aug;80:102491. doi: 10.1016/j.mib.2024.102491. Epub 2024 Jun 3.
6
Analysis of clinical isolates reveals copy number variation in key fluconazole resistance genes.
Antimicrob Agents Chemother. 2024 Jun 5;68(6):e0161923. doi: 10.1128/aac.01619-23. Epub 2024 May 7.
7
Complex: The Current State of Infections and Drug Resistance in Humans.
J Fungi (Basel). 2024 Apr 18;10(4):294. doi: 10.3390/jof10040294.
8
Recent gene selection and drug resistance underscore clinical adaptation across Candida species.
Nat Microbiol. 2024 Jan;9(1):284-307. doi: 10.1038/s41564-023-01547-z. Epub 2024 Jan 4.
9
Analysis of clinical isolates reveals copy number variation in key fluconazole resistance genes.
bioRxiv. 2023 Dec 14:2023.12.13.571446. doi: 10.1101/2023.12.13.571446.
10
JLOH: Inferring loss of heterozygosity blocks from sequencing data.
Comput Struct Biotechnol J. 2023 Nov 7;21:5738-5750. doi: 10.1016/j.csbj.2023.11.003. eCollection 2023.

本文引用的文献

1
Speciation driven by hybridization and chromosomal plasticity in a wild yeast.
Nat Microbiol. 2016 Jan 11;1:15003. doi: 10.1038/nmicrobiol.2015.3.
2
The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens.
Phytopathology. 2016 Feb;106(2):104-12. doi: 10.1094/PHYTO-08-15-0184-RVW. Epub 2016 Jan 29.
3
The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis.
PLoS Genet. 2015 Oct 30;11(10):e1005626. doi: 10.1371/journal.pgen.1005626. eCollection 2015 Oct.
4
The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.
Mol Biol Evol. 2015 Nov;32(11):2818-31. doi: 10.1093/molbev/msv168. Epub 2015 Aug 11.
5
Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage.
PLoS Biol. 2015 Aug 7;13(8):e1002220. doi: 10.1371/journal.pbio.1002220. eCollection 2015 Aug.
6
The parasexual lifestyle of Candida albicans.
Curr Opin Microbiol. 2015 Dec;28:10-7. doi: 10.1016/j.mib.2015.06.017. Epub 2015 Jul 25.
7
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
PLoS One. 2015 Mar 30;10(3):e0119807. doi: 10.1371/journal.pone.0119807. eCollection 2015.
8
Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex.
Fungal Genet Biol. 2015 May;78:16-48. doi: 10.1016/j.fgb.2015.02.009. Epub 2015 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验