John Gagliardi L, Shain Daniel H
Departments of Physics and Biology, Rutgers The State University of New Jersey, Camden, NJ 08102 USA.
Cell Div. 2016 Oct 28;11:14. doi: 10.1186/s13008-016-0026-1. eCollection 2016.
Recent experiments regarding Ndc80/Hec1 in force generation at kinetochores for chromosome motions have prompted speculation about possible models for interactions between positively charged molecules at kinetochores and negative charge at and near the plus ends of microtubules.
A clear picture of how kinetochores and centrosomes establish and maintain a dynamic coupling to microtubules for force generation during the complex motions of mitosis remains elusive. The current paradigm of molecular cell biology requires that specific molecules, or molecular geometries, for force generation be identified. However, it is possible to explain several different mitotic motions-including poleward force production at kinetochores-within a classical electrostatics approach in terms of experimentally known charge distributions, modeled as surface and volume bound charges interacting over nanometer distances.
We propose here that implicating Ndc80/Hec1 as a bound volume positive charge distribution in electrostatic generation of poleward force at kinetochores is most consistent with a wide range of experimental observations on mitotic motions, including polar production of poleward force and chromosome congression.
近期关于Ndc80/Hec1在动粒产生用于染色体运动的力方面的实验,引发了对于动粒上带正电分子与微管正端及附近负电荷之间相互作用可能模型的推测。
在有丝分裂复杂运动过程中,动粒和中心体如何建立并维持与微管的动态耦合以产生力,目前仍不清楚。分子细胞生物学的当前范式要求确定产生力的特定分子或分子几何结构。然而,根据实验已知的电荷分布,以经典静电学方法,将其建模为在纳米距离上相互作用的表面和体束缚电荷,可以解释几种不同的有丝分裂运动,包括动粒处的向极力量产生。
我们在此提出,将Ndc80/Hec1视为动粒处向极力量静电产生中的体束缚正电荷分布,与关于有丝分裂运动的广泛实验观察结果最为一致,包括向极力量的极性产生和染色体汇聚。