Suppr超能文献

柔性动粒-微管附着产生力的数学模型。

A mathematical model of force generation by flexible kinetochore-microtubule attachments.

作者信息

Keener James P, Shtylla Blerta

机构信息

Department of Mathematics, University of Utah, Salt Lake City, UT 84112.

Department of Mathematics, Pomona College, Claremont, CA 91711.

出版信息

Biophys J. 2014 Mar 4;106(5):998-1007. doi: 10.1016/j.bpj.2014.01.013.

Abstract

Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.

摘要

有丝分裂期间的重要机械事件是由附着在动态微管末端的染色体动粒位点产生的力所推动的。关于这些位点如何产生力,已经提出了几种理论模型,并且动粒成分的分子扩散被认为是促进动粒功能的关键因素。然而,这些模型没有明确考虑到最近观察到的动粒成分的灵活性以及负载下微管形状的变化。在本文中,我们开发了一个关于动粒 - 微管连接的数学模型,该模型直接纳入了这两个重要因素,即灵活的动粒结合元件以及张力负载对缩短的微管末端形状的影响。我们将我们的结果与现有的偏向扩散模型进行比较,并探讨蛋白质灵活性在动粒 - 微管连接处产生力中的作用。我们的模型结果表明,动粒成分的灵活性以及负载下微管形状的变化显著降低了对动粒成分高扩散率(或弱特异性结合)的需求;我们的模型预测了最佳的动粒结合剂刚度范围。基于我们的模型结果,我们建议需要重新解释偏向扩散范式的基本原理。

相似文献

1
A mathematical model of force generation by flexible kinetochore-microtubule attachments.
Biophys J. 2014 Mar 4;106(5):998-1007. doi: 10.1016/j.bpj.2014.01.013.
2
Mitosis puts sisters in a strained relationship: force generation at the kinetochore.
Exp Cell Res. 2012 Jul 15;318(12):1361-6. doi: 10.1016/j.yexcr.2012.04.008. Epub 2012 Apr 30.
3
Cdk1 Phosphorylation of the Dam1 Complex Strengthens Kinetochore-Microtubule Attachments.
Curr Biol. 2020 Nov 16;30(22):4491-4499.e5. doi: 10.1016/j.cub.2020.08.054. Epub 2020 Sep 17.
4
Tension directly stabilizes reconstituted kinetochore-microtubule attachments.
Nature. 2010 Nov 25;468(7323):576-9. doi: 10.1038/nature09594.
5
CLIP-170 tethers kinetochores to microtubule plus ends against poleward force by dynein for stable kinetochore-microtubule attachment.
FEBS Lett. 2015 Sep 14;589(19 Pt B):2739-46. doi: 10.1016/j.febslet.2015.07.036. Epub 2015 Jul 29.
6
Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7282-7. doi: 10.1073/pnas.1220700110. Epub 2013 Apr 15.
7
A tension-independent mechanism reduces Aurora B-mediated phosphorylation upon microtubule capture by CENP-E at the kinetochore.
Cell Cycle. 2019 Jun;18(12):1349-1363. doi: 10.1080/15384101.2019.1617615. Epub 2019 May 23.
8
Hec1 Tail Phosphorylation Differentially Regulates Mammalian Kinetochore Coupling to Polymerizing and Depolymerizing Microtubules.
Curr Biol. 2017 Jun 5;27(11):1692-1699.e3. doi: 10.1016/j.cub.2017.04.058. Epub 2017 May 25.
9
Mechanisms of force generation by end-on kinetochore-microtubule attachments.
Curr Opin Cell Biol. 2010 Feb;22(1):57-67. doi: 10.1016/j.ceb.2009.12.010. Epub 2010 Jan 12.
10
RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment.
J Cell Sci. 2009 Jul 15;122(Pt 14):2436-45. doi: 10.1242/jcs.051912. Epub 2009 Jun 23.

引用本文的文献

1
Strain stiffening of Ndc80 complexes attached to microtubule plus ends.
Biophys J. 2022 Nov 1;121(21):4048-4062. doi: 10.1016/j.bpj.2022.09.039. Epub 2022 Oct 4.
2
Electrostatic forces drive poleward chromosome motions at kinetochores.
Cell Div. 2016 Oct 28;11:14. doi: 10.1186/s13008-016-0026-1. eCollection 2016.
3
Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity.
Mol Biol Cell. 2015 May 15;26(10):1829-44. doi: 10.1091/mbc.E14-11-1539. Epub 2015 Mar 25.
4
Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions.
J Cell Biol. 2014 Jul 7;206(1):45-59. doi: 10.1083/jcb.201312107. Epub 2014 Jun 30.

本文引用的文献

1
Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells.
J Cell Biol. 2013 May 13;201(4):577-93. doi: 10.1083/jcb.201301022.
2
Conserved and divergent features of kinetochores and spindle microtubule ends from five species.
J Cell Biol. 2013 Feb 18;200(4):459-74. doi: 10.1083/jcb.201209154.
3
The Ndc80 kinetochore complex directly modulates microtubule dynamics.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16113-8. doi: 10.1073/pnas.1209615109. Epub 2012 Aug 20.
4
The structure of purified kinetochores reveals multiple microtubule-attachment sites.
Nat Struct Mol Biol. 2012 Sep;19(9):925-9. doi: 10.1038/nsmb.2358. Epub 2012 Aug 12.
5
Kinetochore flexibility: creating a dynamic chromosome-spindle interface.
Curr Opin Cell Biol. 2012 Feb;24(1):40-7. doi: 10.1016/j.ceb.2011.12.008. Epub 2012 Jan 3.
6
Structural organization of the kinetochore-microtubule interface.
Curr Opin Cell Biol. 2012 Feb;24(1):48-56. doi: 10.1016/j.ceb.2011.11.003. Epub 2011 Dec 10.
7
Visualizing kinetochore architecture.
Curr Opin Struct Biol. 2011 Oct;21(5):661-9. doi: 10.1016/j.sbi.2011.07.009. Epub 2011 Aug 22.
8
Springs, clutches and motors: driving forward kinetochore mechanism by modelling.
Chromosome Res. 2011 Apr;19(3):409-21. doi: 10.1007/s10577-011-9191-x.
9
Tension directly stabilizes reconstituted kinetochore-microtubule attachments.
Nature. 2010 Nov 25;468(7323):576-9. doi: 10.1038/nature09594.
10
Kinetochores' gripping feat: conformational wave or biased diffusion?
Trends Cell Biol. 2011 Jan;21(1):38-46. doi: 10.1016/j.tcb.2010.09.003. Epub 2010 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验