Suppr超能文献

自闭症谱系障碍中的性别差异:特定核心症状之间的差异

Gender differences in autism spectrum disorders: Divergence among specific core symptoms.

作者信息

Beggiato Anita, Peyre Hugo, Maruani Anna, Scheid Isabelle, Rastam Maria, Amsellem Frederique, Gillberg Carina I, Leboyer Marion, Bourgeron Thomas, Gillberg Christopher, Delorme Richard

机构信息

Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.

Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.

出版信息

Autism Res. 2017 Apr;10(4):680-689. doi: 10.1002/aur.1715. Epub 2016 Nov 3.

Abstract

Community-based studies have consistently shown a sex ratio heavily skewed towards males in autism spectrum disorders (ASD). The factors underlying this predominance of males are largely unknown, but the way girls score on standardized categorical diagnostic tools might account for the underrecognition of ASD in girls. Despite the existence of different norms for boys and girls with ASD on several major screening tests, the algorithm of the Autism Diagnosis Interview-Revised (ADI-R) has not been reformulated. The aim of our study was to investigate which ADI-R items discriminate between males and females, and to evaluate their weighting in the final diagnosis of autism. We then conducted discriminant analysis (DA) on a sample of 594 probands including 129 females with ASD, recruited by the Paris Autism Research International Sibpair (PARIS) Study. A replication analysis was run on an independent sample of 1716 probands including 338 females with ASD, recruited through the Autism Genetics Resource Exchange (AGRE) program. Entering the raw scores for all ADI-R items as independent variables, the DA correctly classified 78.9% of males and 72.9% of females (P < 0.001) in the PARIS cohort, and 72.2% of males and 68.3% of females (P < 0.0001) in the AGRE cohort. Among the items extracted by the stepwise DA, four belonged to the ADI-R algorithm used for the final diagnosis of ASD. In conclusion, several items of the ADI-R that are taken into account in the diagnosis of autism significantly differentiates between males and females. The potential gender bias thus induced may participate in the underestimation of the prevalence of ASD in females. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 680-689. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

摘要

基于社区的研究一直表明,自闭症谱系障碍(ASD)患者的性别比例严重偏向男性。这种男性占主导地位的潜在因素在很大程度上尚不清楚,但女孩在标准化分类诊断工具上的得分方式可能是导致女孩ASD未被充分认识的原因。尽管在几项主要筛查测试中,患有ASD的男孩和女孩有不同的常模,但自闭症诊断访谈修订版(ADI-R)的算法尚未重新制定。我们研究的目的是调查ADI-R中的哪些项目能够区分男性和女性,并评估它们在自闭症最终诊断中的权重。然后,我们对由巴黎国际自闭症研究同胞对(PARIS)研究招募的594名先证者样本进行了判别分析(DA),其中包括129名患有ASD的女性。对通过自闭症遗传学资源交换(AGRE)项目招募的1716名先证者独立样本进行了重复分析,其中包括338名患有ASD的女性。将所有ADI-R项目的原始分数作为自变量输入,DA在PARIS队列中正确分类了78.9%的男性和72.9%的女性(P < 0.001),在AGRE队列中正确分类了72.2%的男性和68.3%的女性(P < 0.0001)。在逐步DA提取的项目中,有四项属于用于ASD最终诊断的ADI-R算法。总之,在自闭症诊断中考虑的ADI-R的几个项目在男性和女性之间有显著差异。由此产生的潜在性别偏见可能导致对女性ASD患病率的低估。《自闭症研究》2016年。© 2016国际自闭症研究协会,威利期刊公司。《自闭症研究》2017年,10: 680 - 689。© 2016国际自闭症研究协会,威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验