Suppr超能文献

移动短期静态用地回归模型对超细颗粒和黑碳浓度预测的比较。

Comparison of Ultrafine Particle and Black Carbon Concentration Predictions from a Mobile and Short-Term Stationary Land-Use Regression Model.

机构信息

Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University , Utrecht 3584 CK, The Netherlands.

Department of Civil, Architectural and Environmental Engineering, University of Texas , Austin, Texas 78712, United States.

出版信息

Environ Sci Technol. 2016 Dec 6;50(23):12894-12902. doi: 10.1021/acs.est.6b03476. Epub 2016 Nov 18.

Abstract

Mobile and short-term monitoring campaigns are increasingly used to develop land-use regression (LUR) models for ultrafine particles (UFP) and black carbon (BC). It is not yet established whether LUR models based on mobile or short-term stationary measurements result in comparable models and concentration predictions. The goal of this paper is to compare LUR models based on stationary (30 min) and mobile UFP and BC measurements from a single campaign. An electric car collected both repeated stationary and mobile measurements in Amsterdam and Rotterdam, The Netherlands. A total of 2964 road segments and 161 stationary sites were sampled over two seasons. Our main comparison was based on predicted concentrations of the mobile and stationary monitoring LUR models at 12 682 residential addresses in Amsterdam. Predictor variables in the mobile and stationary LUR model were comparable, resulting in highly correlated predictions at external residential addresses (R of 0.89 for UFP and 0.88 for BC). Mobile model predictions were, on average, 1.41 and 1.91 times higher than stationary model predictions for UFP and BC, respectively. LUR models based upon mobile and stationary monitoring predicted highly correlated UFP and BC concentration surfaces, but predicted concentrations based on mobile measurements were systematically higher.

摘要

移动和短期监测活动越来越多地被用于开发超细颗粒(UFP)和黑碳(BC)的土地利用回归(LUR)模型。基于移动或短期固定测量的 LUR 模型是否会产生可比的模型和浓度预测尚不确定。本文的目的是比较基于单次活动的固定(30 分钟)和移动 UFP 和 BC 测量的 LUR 模型。一辆电动汽车在荷兰阿姆斯特丹和鹿特丹进行了重复的固定和移动测量。在两个季节中,共对 2964 个路段和 161 个固定站点进行了采样。我们的主要比较是基于在阿姆斯特丹的 12682 个住宅地址上对移动和固定监测 LUR 模型的预测浓度。移动和固定 LUR 模型中的预测变量具有可比性,导致在外部住宅地址上的预测结果高度相关(UFP 的 R 值为 0.89,BC 的 R 值为 0.88)。对于 UFP 和 BC,移动模型的预测值平均分别比固定模型的预测值高 1.41 倍和 1.91 倍。基于移动和固定监测的 LUR 模型预测了高度相关的 UFP 和 BC 浓度表面,但基于移动测量的预测浓度系统偏高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验