Suppr超能文献

基于结构的定量构效关系、蛋白酶激活受体 1 抑制剂的分子设计和生物测定。

Structure-based QSAR, molecule design and bioassays of protease-activated receptor 1 inhibitors.

机构信息

a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300071 , China.

b Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300000 , China.

出版信息

J Biomol Struct Dyn. 2017 Oct;35(13):2853-2867. doi: 10.1080/07391102.2016.1234413. Epub 2016 Nov 3.

Abstract

Quantitative structure-activity relationship (QSAR) studies were performed on a series of protease-activated receptor 1 (PAR1) inhibitors to identify the key structural features responsible for their biological activity. Induced-fit docking (IFD) was used to explore the active mechanisms of all PAR1 inhibitors at the active pocket of PAR1, and the best plausible conformation was determined by IFD for further QSAR studies. Based on the best plausible conformation, structure-based descriptors and ligand descriptors incorporating the ligand-receptor interaction were calculated. The random forest method was used to select important descriptors and build the 2D-QSAR model. The results of the 2D-QSAR model gave a squared correlation coefficient (R) of 0.937, a prediction squared correlation coefficient (R) of 0.845 and a mean square error (MSE) of 0.056. Furthermore, a 3D-QSAR model was developed via topomer comparative molecular field analysis (Topomer CoMFA), resulting in an R of 0.938, a cross-validated Q of 0.503 and a R of 0.758. Based on the developed QSAR model, Topomer search was used for virtual screening of the R2 fragment in lead-like inhibitors from the National Cancer Institute (NCI) database, which contains 260,000 molecules. Eighty-two compounds were designed with different R2 fragments, and four of these compounds were selected for further biological testing. All four compounds showed inhibitory potency against PAR1.

摘要

定量构效关系(QSAR)研究对一系列蛋白酶激活受体 1(PAR1)抑制剂进行了研究,以确定其生物活性的关键结构特征。诱导契合对接(IFD)用于探索所有 PAR1 抑制剂在 PAR1 活性口袋中的活性机制,并通过 IFD 确定最佳合理构象,以便进一步进行 QSAR 研究。基于最佳合理构象,计算了基于结构的描述符和包含配体-受体相互作用的配体描述符。随机森林方法用于选择重要描述符并构建二维 QSAR 模型。二维 QSAR 模型的结果给出了 0.937 的平方相关系数(R)、0.845 的预测平方相关系数(R)和 0.056 的均方误差(MSE)。此外,通过拓扑比较分子场分析(Topomer CoMFA)开发了三维 QSAR 模型,得到了 0.938 的 R、0.503 的交叉验证 Q 和 0.758 的 R。基于开发的 QSAR 模型,对来自国家癌症研究所(NCI)数据库的先导抑制剂中的 R2 片段进行了拓扑搜索虚拟筛选,该数据库包含 26 万个分子。设计了 82 种具有不同 R2 片段的化合物,其中 4 种化合物被选进行进一步的生物学测试。所有 4 种化合物均显示出对 PAR1 的抑制活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验