Suppr超能文献

内在细胞特性和连接密度决定随机连接抑制性神经网络中的可变聚类模式。

Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks.

作者信息

Rich Scott, Booth Victoria, Zochowski Michal

机构信息

Applied and Interdisciplinary Mathematics, University of Michigan Ann Arbor, MI, USA.

Departments of Mathematics and Anesthesiology, University of Michigan Ann Arbor, MI, USA.

出版信息

Front Neural Circuits. 2016 Oct 20;10:82. doi: 10.3389/fncir.2016.00082. eCollection 2016.

Abstract

The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics compared to those in networks of Type I or Type II neurons. To understand these results, we compute neuronal PRCs calculated with a perturbation matching the profile of the synaptic current in our networks. Differences in profiles of these PRCs across the different neuron types reveal mechanisms underlying the divergent network dynamics.

摘要

海马体和皮质中大量的抑制性中间神经元通过聚集和同步细胞放电在产生节律性活动中发挥关键作用。我们的模拟结果表明,神经元的内在细胞特性和网络连接程度都会影响随机连接的异质性抑制网络中表现出的聚集动力学特征。我们通过神经元的电流-频率关系(IF曲线)和相位响应曲线(PRC)来量化内在细胞特性,PRC是衡量在神经元放电周期的不同阶段施加的扰动如何影响后续峰值时间的指标。我们分析了在兴奋性和PRC分布方面具有I型或II型特性的神经元网络的网络爆发特性;I型PRC严格显示相位提前,且IF曲线在放电阈值处频率任意接近零,而II型PRC既显示相位提前又显示延迟,且IF曲线在阈值处具有非零频率。考虑了具有或不具有M型适应电流的II型神经元特性。我们分析了在不同细胞异质性水平下以及随着内在细胞放电频率和突触抑制衰减时间尺度变化时的网络动力学。这些网络表现出的许多动力学与中间神经元网络伽马(ING)机制的预测不同,也与全连接网络的结果不同。我们的结果表明,随机连接的I型神经元网络同步为单个活跃神经元簇,而II型神经元网络则组织成由细胞内在放电频率分隔的两个相互排斥的簇。包含适应电流的II型神经元网络根据网络参数的不同,其行为类似于I型或II型神经元网络;然而,与I型或II型神经元网络相比,适应电流在簇动力学方面产生了差异。为了理解这些结果,我们计算了通过与我们网络中突触电流分布相匹配的扰动计算得到的神经元PRC。不同神经元类型的这些PRC分布差异揭示了网络动力学差异背后的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13df/5071331/e967e23d2123/fncir-10-00082-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验