Witkowski Benoit, Duru Valentine, Khim Nimol, Ross Leila S, Saintpierre Benjamin, Beghain Johann, Chy Sophy, Kim Saorin, Ke Sopheakvatey, Kloeung Nimol, Eam Rotha, Khean Chanra, Ken Malen, Loch Kaknika, Bouillon Anthony, Domergue Anais, Ma Laurence, Bouchier Christiane, Leang Rithea, Huy Rekol, Nuel Grégory, Barale Jean-Christophe, Legrand Eric, Ringwald Pascal, Fidock David A, Mercereau-Puijalon Odile, Ariey Frédéric, Ménard Didier
Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia; Malaria Translational Research Unit, Institut Pasteur, Paris, France; Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
Lancet Infect Dis. 2017 Feb;17(2):174-183. doi: 10.1016/S1473-3099(16)30415-7. Epub 2016 Nov 3.
Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin-piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecular marker, but no marker exists for piperaquine resistance. We aimed to identify genetic markers of piperaquine resistance and study their association with dihydroartemisinin-piperaquine treatment failures.
We obtained blood samples from Cambodian patients infected with P falciparum and treated with dihydroartemisinin-piperaquine. Patients were followed up for 42 days during the years 2009-15. We established in-vitro and ex-vivo susceptibility profiles for a subset using piperaquine survival assays. We determined whole-genome sequences by Illumina paired-reads sequencing, copy number variations by qPCR, RNA concentrations by qRT-PCR, and protein concentrations by immunoblotting. Fisher's exact and non-parametric Wilcoxon rank-sum tests were used to identify significant differences in single-nucleotide polymorphisms or copy number variants, respectively, for differential distribution between piperaquine-resistant and piperaquine-sensitive parasite lines.
Whole-genome exon sequence analysis of 31 culture-adapted parasite lines associated amplification of the plasmepsin 2-plasmepsin 3 gene cluster with in-vitro piperaquine resistance. Ex-vivo piperaquine survival assay profiles of 134 isolates correlated with plasmepsin 2 gene copy number. In 725 patients treated with dihydroartemisinin-piperaquine, multicopy plasmepsin 2 in the sample collected before treatment was associated with an adjusted hazard ratio (aHR) for treatment failure of 20·4 (95% CI 9·1-45·5, p<0·0001). Multicopy plasmepsin 2 predicted dihydroartemisinin-piperaquine failures with 0·94 (95% CI 0·88-0·98) sensitivity and 0·77 (0·74-0·81) specificity. Analysis of samples collected across the country from 2002 to 2015 showed that the geographical and temporal increase of the proportion of multicopy plasmepsin 2 parasites was highly correlated with increasing dihydroartemisinin-piperaquine treatment failure rates (r=0·89 [95% CI 0·77-0·95], p<0·0001, Spearman's coefficient of rank correlation). Dihydroartemisinin-piperaquine efficacy at day 42 fell below 90% when the proportion of multicopy plasmepsin 2 parasites exceeded 22%.
Piperaquine resistance in Cambodia is strongly associated with amplification of plasmepsin 2-3, encoding haemoglobin-digesting proteases, regardless of the location. Multicopy plasmepsin 2 constitutes a surrogate molecular marker to track piperaquine resistance. A molecular toolkit combining plasmepsin 2 with K13 and mdr1 monitoring should provide timely information for antimalarial treatment and containment policies.
Institut Pasteur in Cambodia, Institut Pasteur Paris, National Institutes of Health, WHO, Agence Nationale de la Recherche, Investissement d'Avenir programme, Laboratoire d'Excellence Integrative "Biology of Emerging Infectious Diseases".
柬埔寨西部是恶性疟原虫多重耐药的中心,并且面临着双氢青蒿素 - 哌喹治疗失败率高的问题。需要检测多重耐药寄生虫的基因工具。青蒿素耐药性可以使用K13分子标记进行追踪,但不存在哌喹耐药性的标记。我们旨在鉴定哌喹耐药性的基因标记,并研究它们与双氢青蒿素 - 哌喹治疗失败的关联。
我们从感染恶性疟原虫并接受双氢青蒿素 - 哌喹治疗的柬埔寨患者身上采集血液样本。在2009年至2015年期间对患者进行了42天的随访。我们使用哌喹存活试验为一个子集建立了体外和离体敏感性概况。我们通过Illumina双端测序确定全基因组序列,通过qPCR确定拷贝数变异,通过qRT-PCR确定RNA浓度,通过免疫印迹确定蛋白质浓度。Fisher精确检验和非参数Wilcoxon秩和检验分别用于鉴定单核苷酸多态性或拷贝数变异的显著差异,以用于哌喹耐药和哌喹敏感寄生虫株之间的差异分布。
对31个适应培养的寄生虫株进行全基因组外显子序列分析,发现组织蛋白酶2 - 组织蛋白酶3基因簇的扩增与体外哌喹耐药性相关。134个分离株的离体哌喹存活试验概况与组织蛋白酶2基因拷贝数相关。在725例接受双氢青蒿素 - 哌喹治疗的患者中,治疗前采集样本中的多拷贝组织蛋白酶2与治疗失败的调整后风险比(aHR)为20.4(95%CI 9.1 - 45.5,p<0.0001)相关。多拷贝组织蛋白酶2预测双氢青蒿素 - 哌喹治疗失败的敏感性为0.94(95%CI 0.88 - 0.98),特异性为0.77(0.74 - 0.81)。对2002年至2015年从该国各地采集的样本进行分析表明,多拷贝组织蛋白酶2寄生虫比例的地理和时间增加与双氢青蒿素 - 哌喹治疗失败率的增加高度相关(r = 0.89 [95%CI 0.77 - 0.95],p<0.0001,Spearman等级相关系数)。当多拷贝组织蛋白酶2寄生虫比例超过22%时,第42天的双氢青蒿素 - 哌喹疗效降至90%以下。
柬埔寨的哌喹耐药性与编码血红蛋白消化蛋白酶的组织蛋白酶2 - 3的扩增密切相关,无论地点如何。多拷贝组织蛋白酶2构成了追踪哌喹耐药性的替代分子标记。将组织蛋白酶2与K13和mdr1监测相结合的分子工具包应为抗疟治疗和控制政策提供及时信息。
柬埔寨巴斯德研究所、巴黎巴斯德研究所、美国国立卫生研究院、世界卫生组织、法国国家科研署、未来投资计划、卓越综合实验室“新兴传染病生物学”