Suppr超能文献

青霉素结合蛋白3对铜绿假单胞菌的生长至关重要。

Penicillin-Binding Protein 3 Is Essential for Growth of Pseudomonas aeruginosa.

作者信息

Chen Wei, Zhang Yong-Mei, Davies Christopher

机构信息

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA

出版信息

Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.01651-16. Print 2017 Jan.

Abstract

Penicillin-binding proteins (PBPs) function as transpeptidases, carboxypeptidases, or endopeptidases during peptidoglycan synthesis in bacteria. As the well-known drug targets for β-lactam antibiotics, the physiological functions of PBPs and whether they are essential for growth are of significant interest. The pathogen Pseudomonas aeruginosa poses a particular risk to immunocompromised and cystic fibrosis patients, and infections caused by this pathogen are difficult to treat due to antibiotic resistance. To identify potential drug targets among the PBPs in P. aeruginosa, we performed gene knockouts of all the high-molecular-mass (HMM) PBPs and determined the impacts on cell growth and morphology, susceptibility to β-lactams, peptidoglycan structure, virulence, and pathogenicity. Disruptions of the transpeptidase domains of most HMM PBPs, including double disruptions, had only minimal effects on cell growth. The exception was PBP3, where cell growth occurred only when the protein was conditionally expressed on an integrated plasmid. Conditional deletion of PBP3 also caused a defect in cell division and increased susceptibility to β-lactams. Knockout of PBP1a led to impaired motility, and this observation, together with its localization at the cell poles, suggests its involvement in flagellar function. Overall, these findings reveal that PBP3 represents the most promising target for drug discovery against P. aeruginosa, whereas other HMM PBPs have less potential.

摘要

青霉素结合蛋白(PBPs)在细菌肽聚糖合成过程中发挥转肽酶、羧肽酶或内肽酶的作用。作为β-内酰胺类抗生素广为人知的药物靶点,PBPs的生理功能以及它们对细菌生长是否必不可少备受关注。病原体铜绿假单胞菌对免疫功能低下和囊性纤维化患者构成特别的风险,并且由于抗生素耐药性,由该病原体引起的感染难以治疗。为了在铜绿假单胞菌的PBPs中鉴定潜在的药物靶点,我们对所有高分子量(HMM)PBPs进行了基因敲除,并确定了其对细胞生长和形态、对β-内酰胺类药物的敏感性、肽聚糖结构、毒力和致病性的影响。大多数HMM PBPs的转肽酶结构域的破坏,包括双重破坏,对细胞生长的影响极小。例外的是PBP3,只有当该蛋白在整合质粒上进行条件性表达时细胞才能生长。PBP3的条件性缺失也导致细胞分裂缺陷并增加对β-内酰胺类药物的敏感性。PBP1a的敲除导致运动能力受损,这一观察结果及其在细胞两极的定位表明它参与鞭毛功能。总体而言,这些发现表明PBP3是针对铜绿假单胞菌进行药物研发最有前景的靶点,而其他HMM PBPs的潜力较小。

相似文献

1
Penicillin-Binding Protein 3 Is Essential for Growth of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.01651-16. Print 2017 Jan.
5
Effects of Inactivation of d,d-Transpeptidases of Acinetobacter baumannii on Bacterial Growth and Susceptibility to β-Lactam Antibiotics.
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0172921. doi: 10.1128/AAC.01729-21. Epub 2021 Nov 15.
8
Production and purification of the penicillin-binding protein 3 from Pseudomonas aeruginosa.
Protein Expr Purif. 2010 Oct;73(2):177-83. doi: 10.1016/j.pep.2010.05.005. Epub 2010 May 16.

引用本文的文献

1
Specific variants in reduce carbapenem susceptibility in .
Microbiol Spectr. 2025 Aug 5;13(8):e0102725. doi: 10.1128/spectrum.01027-25. Epub 2025 Jul 7.
2
Combatting with β-Lactam Antibiotics: A Revived Weapon?
Antibiotics (Basel). 2025 May 20;14(5):526. doi: 10.3390/antibiotics14050526.
3
Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens.
Antibiotics (Basel). 2025 Jan 9;14(1):63. doi: 10.3390/antibiotics14010063.
4
Synthesis of designed new 1,3,4-oxadiazole functionalized pyrano [2,3-f] chromene derivatives and their antimicrobial activities.
Heliyon. 2024 Sep 25;10(19):e38294. doi: 10.1016/j.heliyon.2024.e38294. eCollection 2024 Oct 15.
5
Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens.
Molecules. 2024 Aug 27;29(17):4065. doi: 10.3390/molecules29174065.
6
An engineered prodrug selectively suppresses β-lactam resistant bacteria in a mixed microbial setting.
bioRxiv. 2024 Aug 3:2024.08.02.606422. doi: 10.1101/2024.08.02.606422.
8
Drug Discovery in the Field of β-Lactams: An Academic Perspective.
Antibiotics (Basel). 2024 Jan 8;13(1):59. doi: 10.3390/antibiotics13010059.
9
Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing.
Front Cell Infect Microbiol. 2023 Jun 29;13:1159798. doi: 10.3389/fcimb.2023.1159798. eCollection 2023.

本文引用的文献

2
Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates.
Antimicrob Agents Chemother. 2016 Jan 4;60(3):1767-78. doi: 10.1128/AAC.02676-15.
4
Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4110-5. doi: 10.1073/pnas.1419677112. Epub 2015 Mar 16.
7
Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection.
PLoS Genet. 2014 Jul 24;10(7):e1004518. doi: 10.1371/journal.pgen.1004518. eCollection 2014 Jul.
9
The putative Poc complex controls two distinct Pseudomonas aeruginosa polar motility mechanisms.
Mol Microbiol. 2013 Dec;90(5):923-38. doi: 10.1111/mmi.12403. Epub 2013 Oct 16.
10
Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality.
Eur J Clin Microbiol Infect Dis. 2013 Mar;32(3):413-20. doi: 10.1007/s10096-012-1758-8. Epub 2013 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验