Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA.
Antimicrob Agents Chemother. 2023 Jun 15;67(6):e0160322. doi: 10.1128/aac.01603-22. Epub 2023 May 18.
The β-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for β-lactams and β-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All β-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating β-lactams. Imipenem yielded 1.5 ± 0.11 log killing at 1h compared to <0.5 log killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated ( = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future β-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.
β-内酰胺类抗生素数十年来成功地用于治疗对其具有固有耐药性的铜绿假单胞菌,铜绿假单胞菌具有难以穿透的外膜(OM)。然而,关于完整细菌中β-内酰胺类药物和β-内酰胺酶抑制剂的靶位穿透和青霉素结合蛋白(PBP)的共价结合的数据很少。我们旨在确定完整和裂解细胞中 PBP 结合的时间过程,并估计 15 种化合物在铜绿假单胞菌 PAO1 中的靶位穿透和 PBP 可及性。所有β-内酰胺类药物(2×MIC)在裂解细菌中均能显著结合 PBP1 至 4。然而,在完整细菌中,PBP 结合受到显著抑制,而对快速穿透的β-内酰胺类药物则没有抑制。亚胺培南在 1 小时时产生 1.5±0.11 对数杀灭,而所有其他药物的杀灭率均<0.5 对数。与亚胺培南相比,多尼培南和美罗培南的净流入率和 PBP 可及性约慢 2 倍,头孢他啶快 14 倍,头孢吡肟快 45 倍,舒巴坦快 50 倍,厄他培南快 72 倍,哌拉西林/他唑巴坦快 249 倍,他唑巴坦快 358 倍,头孢呋辛快 547 倍,头孢噻肟快 1019 倍。在 2×MIC 时,PBP5/6 结合的程度与净流入率和 PBP 可及性高度相关(=0.96),这表明 PBP5/6 充当了诱饵靶位,缓慢穿透的未来β-内酰胺类药物应避免与该靶位结合。这是首次对完整和裂解铜绿假单胞菌中 PBP 结合的时间过程进行全面评估,解释了为什么只有亚胺培南能快速杀菌。在完整细菌中开发的新型共价结合测定法可解释所有表达的耐药机制。