Hawellek David J, Wong Yan T, Pesaran Bijan
Center for Neural Science, New York University, New York, NY 10003.
Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, 3010 VIC, Australia.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13492-13497. doi: 10.1073/pnas.1606479113. Epub 2016 Nov 7.
Making a decision involves computations across distributed cortical and subcortical networks. How such distributed processing is performed remains unclear. We test how the encoding of choice in a key decision-making node, the posterior parietal cortex (PPC), depends on the temporal structure of the surrounding population activity. We recorded spiking and local field potential (LFP) activity in the PPC while two rhesus macaques performed a decision-making task. We quantified the mutual information that neurons carried about an upcoming choice and its dependence on LFP activity. The spiking of PPC neurons was correlated with LFP phases at three distinct time scales in the theta, beta, and gamma frequency bands. Importantly, activity at these time scales encoded upcoming decisions differently. Choice information contained in neural firing varied with the phase of beta and gamma activity. For gamma activity, maximum choice information occurred at the same phase as the maximum spike count. However, for beta activity, choice information and spike count were greatest at different phases. In contrast, theta activity did not modulate the encoding properties of PPC units directly but was correlated with beta and gamma activity through cross-frequency coupling. We propose that the relative timing of local spiking and choice information reveals temporal reference frames for computations in either local or large-scale decision networks. Differences between the timing of task information and activity patterns may be a general signature of distributed processing across large-scale networks.
做出决策涉及分布于皮质和皮质下网络的计算过程。这种分布式处理是如何进行的仍不清楚。我们测试了关键决策节点——顶叶后皮质(PPC)中选择的编码如何依赖于周围群体活动的时间结构。当两只恒河猴执行决策任务时,我们记录了PPC中的尖峰放电和局部场电位(LFP)活动。我们量化了神经元携带的关于即将做出的选择的互信息及其对LFP活动的依赖性。PPC神经元的尖峰放电在theta、beta和gamma频段的三个不同时间尺度上与LFP相位相关。重要的是,这些时间尺度上的活动对即将做出的决策进行了不同的编码。神经放电中包含的选择信息随beta和gamma活动的相位而变化。对于gamma活动,最大选择信息出现在与最大尖峰计数相同的相位。然而,对于beta活动,选择信息和尖峰计数在不同相位最大。相比之下,theta活动并没有直接调节PPC单元的编码特性,而是通过交叉频率耦合与beta和gamma活动相关。我们提出,局部尖峰放电和选择信息的相对时间揭示了局部或大规模决策网络中计算的时间参考框架。任务信息的时间和活动模式之间的差异可能是大规模网络中分布式处理的一个普遍特征。