Suppr超能文献

仿射微分几何与平滑度最大化作为识别几何运动基元的工具。

Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.

作者信息

Polyakov Felix

机构信息

Department of Mathematics, Ariel University, Ariel, Israel.

Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.

出版信息

Biol Cybern. 2017 Feb;111(1):5-24. doi: 10.1007/s00422-016-0705-7. Epub 2016 Nov 7.

Abstract

Neuroscientific studies of drawing-like movements usually analyze neural representation of either geometric (e.g., direction, shape) or temporal (e.g., speed) parameters of trajectories rather than trajectory's representation as a whole. This work is about identifying geometric building blocks of movements by unifying different empirically supported mathematical descriptions that characterize relationship between geometric and temporal aspects of biological motion. Movement primitives supposedly facilitate the efficiency of movements' representation in the brain and comply with such criteria for biological movements as kinematic smoothness and geometric constraint. The minimum-jerk model formalizes criterion for trajectories' maximal smoothness of order 3. I derive a class of differential equations obeyed by movement paths whose nth-order maximally smooth trajectories accumulate path measurement with constant rate. Constant rate of accumulating equi-affine arc complies with the 2/3 power-law model. Candidate primitive shapes identified as equations' solutions for arcs in different geometries in plane and in space are presented. Connection between geometric invariance, motion smoothness, compositionality and performance of the compromised motor control system is proposed within single invariance-smoothness framework. The derived class of differential equations is a novel tool for discovering candidates for geometric movement primitives.

摘要

对类绘画动作的神经科学研究通常分析轨迹的几何参数(如方向、形状)或时间参数(如速度)的神经表征,而非轨迹作为一个整体的表征。这项工作旨在通过统一不同的、有实证支持的数学描述来识别动作的几何构建块,这些描述刻画了生物运动的几何和时间方面之间的关系。运动基元据称有助于提高大脑中动作表征的效率,并符合生物运动的运动学平滑性和几何约束等标准。最小加加速度模型将轨迹三阶最大平滑性的标准形式化。我推导了一类运动路径所遵循的微分方程,其n阶最大平滑轨迹以恒定速率累积路径测量值。等仿射弧的恒定累积速率符合2/3幂律模型。给出了在平面和空间中不同几何形状下被识别为方程弧解的候选基元形状。在单一不变性-平滑性框架内,提出了几何不变性、运动平滑性、组合性与受损运动控制系统性能之间的联系。所推导的这类微分方程是发现几何运动基元候选者的一种新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验