Becker-Bense Sandra, Buchholz Hans-Georg, Baier Bernhard, Schreckenberger Mathias, Bartenstein Peter, Zwergal Andreas, Brandt Thomas, Dieterich Marianne
Department of Neurology, University of Munich, Munich, Germany.
German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany.
PLoS One. 2016 Nov 8;11(11):e0165935. doi: 10.1371/journal.pone.0165935. eCollection 2016.
The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic motor output to subserve balance and locomotion, as well as sensorimotor integration.
本研究的目的是揭示急性单侧中脑梗死伴急性前庭张力失衡患者在脑干、小脑和皮质水平上前庭功能中枢代偿的机制。17例单侧中脑梗死患者中,有8例根据前庭张力失衡的体征入选,例如在两个时间点进行的F18-氟脱氧葡萄糖(FDG)-PET检查中出现重力感受性(感知垂直性倾斜)和动眼功能障碍(斜视、眼球扭转):A)急性期,B)6个月后恢复时。通过MRI进行的病变-行为映射分析确定了确切的结构病变部位。对PET数据使用统计参数映射进行组间减法分析并与健康对照进行比较。急性期患者的PET A与健康对照的PET A相比,小脑、运动敏感视觉皮质区域和颞下叶的葡萄糖代谢增加,但前庭皮质区域无增加。在幕上水平,双侧信号降低主要出现在丘脑、额叶眼区和前扣带回。与增加的情况相反,这些降低在临床恢复后持续存在。短暂激活可归因于眼球运动和姿势恢复(小脑)以及前庭功能对运动感知的感觉替代(视觉皮质)。丘脑核和额叶眼区持续的失活允许对丘脑核进行其他功能解释:要么发生上行感觉输入的断开连接,要么预期和实际前庭活动之间存在功能不匹配。我们的数据支持这样的观点,即两个丘脑分别为每个半球运作,但从同侧和对侧中脑整合中心接收前庭输入。正常情况下,它们对皮质的多感觉输入具有守门功能,并对自动运动输出进行调节,以维持平衡和运动,以及感觉运动整合。