Suppr超能文献

在描述的因果学习情境与实际经历的因果学习情境中,“排除解释”和“屏蔽效应”的失效情况。

Failures of explaining away and screening off in described versus experienced causal learning scenarios.

作者信息

Rehder Bob, Waldmann Michael R

机构信息

Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA.

Department of Psychology, University of Göttingen, Göttingen, Germany.

出版信息

Mem Cognit. 2017 Feb;45(2):245-260. doi: 10.3758/s13421-016-0662-3.

Abstract

Causal Bayes nets capture many aspects of causal thinking that set them apart from purely associative reasoning. However, some central properties of this normative theory routinely violated. In tasks requiring an understanding of explaining away and screening off, subjects often deviate from these principles and manifest the operation of an associative bias that we refer to as the rich-get-richer principle. This research focuses on these two failures comparing tasks in which causal scenarios are merely described (via verbal statements of the causal relations) versus experienced (via samples of data that manifest the intervariable correlations implied by the causal relations). Our key finding is that we obtained stronger deviations from normative predictions in the described conditions that highlight the instructed causal model compared to those that presented data. This counterintuitive finding indicate that a theory of causal reasoning and learning needs to integrate normative principles with biases people hold about causal relations.

摘要

因果贝叶斯网络捕捉到了因果思维的许多方面,这些方面使它们有别于纯粹的关联推理。然而,这一规范理论的一些核心属性经常被违反。在需要理解“解释消除”和“屏蔽”的任务中,受试者常常偏离这些原则,并表现出一种关联偏差的运作,我们将其称为“富者更富”原则。本研究聚焦于这两种失败情况,比较了仅仅描述因果情景(通过因果关系的文字陈述)与体验因果情景(通过体现因果关系所隐含的变量间相关性的数据样本)的任务。我们的关键发现是,与呈现数据的情况相比,在突出所指示因果模型的描述条件下,我们从规范预测中获得了更强的偏差。这一违反直觉的发现表明,因果推理和学习理论需要将规范原则与人们对因果关系持有的偏差整合起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验