Lesept Flavie, Chevilley Arnaud, Jezequel Julie, Ladépêche Laurent, Macrez Richard, Aimable Margaux, Lenoir Sophie, Bertrand Thomas, Rubrecht Laëtitia, Galea Pascale, Lebouvier Laurent, Petersen Karl-Uwe, Hommet Yannick, Maubert Eric, Ali Carine, Groc Laurent, Vivien Denis
Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie, GIP Cyceron, Caen, France.
Interdisciplinary Institute for Neuroscience, Université de Bordeaux UMR 5297, Bordeaux, France.
Cell Death Dis. 2016 Nov 10;7(11):e2466. doi: 10.1038/cddis.2016.279.
N-methyl-d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). To date, the roles and dynamics of the NTD of the GluN1 subunit in NMDAR allosteric signaling remain poorly understood. Using single nanoparticle tracking in mouse neurons, we demonstrate that the extracellular neuronal protease tissue-type plasminogen activator (tPA), well known to have a role in the synaptic plasticity and neuronal survival, leads to a selective increase of the surface dynamics and subsequent diffusion of extrasynaptic NMDARs. This process explains the previously reported ability of tPA to promote NMDAR-mediated calcium influx. In parallel, we developed a monoclonal antibody capable of specifically blocking the interaction of tPA with the NTD of the GluN1 subunit of NMDAR. Using this original approach, we demonstrate that the tPA binds the NTD of the GluN1 subunit at a lysine in position 178. Accordingly, when applied to mouse neurons, our selected antibody (named Glunomab) leads to a selective reduction of the tPA-mediated surface dynamics of extrasynaptic NMDARs, subsequent signaling and neurotoxicity, both in vitro and in vivo. Altogether, we demonstrate that the tPA is a ligand of the NTD of the obligatory GluN1 subunit of NMDAR acting as a modulator of their dynamic distribution at the neuronal surface and subsequent signaling.
N-甲基-D-天冬氨酸受体(NMDARs)是离子通道,其突触与突触外定位对其功能有至关重要的影响。NMDARs的这种分布高度依赖于它们在细胞膜上的横向扩散。NMDARs的每个必需亚基(GluN1和GluN2)都包含两个细胞外蛤壳样结构域,一个激动剂结合结构域和一个远端N端结构域(NTD)。迄今为止,GluN1亚基的NTD在NMDAR变构信号传导中的作用和动力学仍知之甚少。通过在小鼠神经元中进行单纳米颗粒追踪,我们证明细胞外神经元蛋白酶组织型纤溶酶原激活剂(tPA),众所周知其在突触可塑性和神经元存活中起作用,会导致突触外NMDARs的表面动力学选择性增加以及随后的扩散。这一过程解释了先前报道的tPA促进NMDAR介导钙内流的能力。同时,我们开发了一种单克隆抗体,可以特异性阻断tPA与NMDAR的GluN1亚基的NTD的相互作用。使用这种原始方法,我们证明tPA在第178位赖氨酸处与GluN1亚基的NTD结合。因此,当应用于小鼠神经元时,我们选择的抗体(命名为GluNomab)会导致突触外NMDARs的tPA介导的表面动力学、随后的信号传导和神经毒性在体外和体内都选择性降低。总之,我们证明tPA是NMDAR必需的GluN1亚基的NTD的配体,作为其在神经元表面动态分布和随后信号传导的调节剂。