Suppr超能文献

快速双边滤波用于大型 3D 图像去噪。

Fast Bilateral Filtering for Denoising Large 3D Images.

出版信息

IEEE Trans Image Process. 2017 Jan;26(1):251-261. doi: 10.1109/TIP.2016.2624148. Epub 2016 Nov 1.

Abstract

A fast implementation of bilateral filtering is presented, which is based on an optimal expansion of the filter kernel into a sum of factorized terms. These terms are computed by minimizing the expansion error in the mean-square-error sense. This leads to a simple and elegant solution in terms of eigenvectors of a square matrix. In this way, the bilateral filter is applied through computing a few Gaussian convolutions, for which very efficient algorithms are readily available. Moreover, the expansion functions are optimized for the histogram of the input image, leading to improved accuracy. It is shown that this further optimization it made possible by removing the commonly deployed constrain of shiftability of the basis functions. Experimental validation is carried out in the context of digital rock imaging. Results on large 3D images of rock samples show the superiority of the proposed method with respect to other fast approximations of bilateral filtering.

摘要

提出了一种双边滤波的快速实现方法,该方法基于将滤波器核最优展开为因子项的和。这些项通过在均方误差意义下最小化扩展误差来计算。这导致了一个简单而优雅的解决方案,涉及到一个方阵的特征向量。通过这种方式,通过计算几个高斯卷积来应用双边滤波器,对于这些卷积,已经有非常有效的算法可用。此外,扩展函数针对输入图像的直方图进行了优化,从而提高了准确性。结果表明,通过去除常用的基函数可移动性约束,可以进一步优化。在数字岩石成像的背景下进行了实验验证。对岩石样本的大 3D 图像的结果表明,与双边滤波的其他快速逼近方法相比,该方法具有优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验