Suppr超能文献

基于多色CT图像自身噪声特性的去噪处理。

Denoising of polychromatic CT images based on their own noise properties.

作者信息

Kim Ji Hye, Chang Yongjin, Ra Jong Beom

机构信息

Department of Electrical Engineering, KAIST, Daejeon 305-701, South Korea.

出版信息

Med Phys. 2016 May;43(5):2251. doi: 10.1118/1.4945022.

Abstract

PURPOSE

Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determined according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise.

METHODS

For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted.

RESULTS

Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution.

CONCLUSIONS

To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.

摘要

目的

由于计算机断层扫描(CT)具有较高的诊断准确性和快速的扫描时间,已在各种临床应用中广泛使用。然而,由于CT扫描会使患者受到辐射暴露,因此剂量降低最近已被视为CT成像中的一个重要问题。然而,低剂量CT会导致图像噪声增加,从而降低诊断准确性。在本文中,作者开发了一种用于使用多色X射线源获得的低剂量CT图像的高效去噪算法。该算法基于两个步骤:(i)估计空间可变噪声统计信息,该信息根据系统几何形状和扫描对象唯一确定;(ii)随后将估计的噪声新颖地转换为高斯噪声,以便可以将现有的高性能高斯噪声滤波算法直接应用于具有非高斯噪声的CT图像。

方法

为了实现高效的多色CT图像去噪,作者首先使用用于CT的迭代最大似然多色算法重建图像,以减轻束硬化问题。然后,我们估计图像域上的空间可变噪声方差分布。由于有许多适用于高斯噪声的高性能去噪算法,如果可以使用这些算法,图像去噪可以变得更加高效。因此,作者提出了一种新颖的转换方案,将估计的空间可变噪声转换为近似高斯噪声。在建议的方案中,作者首先对图像进行转换,使其均值和方差具有线性关系,然后通过方差稳定变换生成高斯图像。然后,作者应用针对高斯图像降噪进行优化的块匹配4D算法,并将结果重新转换以获得最终的去噪图像。为了检验所提出方法的性能,进行了XCAT体模模拟和物理体模实验。

结果

模拟和实验结果均表明,与现有的去噪算法不同,所提出的算法可以在防止图像分辨率下降的同时,有效降低CT图像整个区域的噪声。

结论

为了有效地对多色低剂量CT图像进行去噪,提出了一种新颖的去噪算法。由于该算法基于重建的多色CT图像的噪声统计信息,因此有效地降低了图像上的空间变化噪声,从而使去噪后的图像在图像域上具有均匀的质量。通过模拟和实际实验,验证了所提出的算法与现有的去噪算法相比可以提供更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验