Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Sci Transl Med. 2016 Nov 9;8(364):364ra155. doi: 10.1126/scitranslmed.aai8545.
Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy.
患有弥漫性大 B 细胞淋巴瘤 (DLBCL) 的患者在肿瘤行为和结果方面表现出明显的多样性,但识别高危人群仍然具有挑战性。此外,这些差异的生物学基础尚不完全清楚。我们假设,使用循环肿瘤 DNA (ctDNA) 分析来描述突变异质性和基因组进化,可以揭示不良预后的分子决定因素。为了验证这一假设,我们对 92 名淋巴瘤患者和 24 名健康受试者的肿瘤活检和无细胞 DNA 样本进行了癌症个体化分析深度测序 (CAPP-Seq) 分析。在诊断时,ctDNA 的含量与临床指标密切相关,并且独立预测了患者的预后。我们证明 ctDNA 基因分型可以直接从血浆中对转录定义的肿瘤亚型进行分类,包括 DLBCL 细胞起源。通过同时跟踪 ctDNA 中的多个体细胞突变,我们的方法在检测微小残留疾病方面优于免疫球蛋白测序和影像学,并且可以进行非侵入性鉴定针对靶向治疗的耐药性突变。此外,我们还发现了区分惰性滤泡性淋巴瘤和转化为 DLBCL 的淋巴瘤的独特克隆进化模式,从而可以潜在地进行非侵入性预测组织学转化。总之,我们的研究结果表明,ctDNA 分析揭示了淋巴瘤临床结果的生物学因素,并可以促进个体化治疗。
Int J Mol Sci. 2025-5-19
Ann Hematol. 2018-10-27
Curr Hematol Malig Rep. 2022-12
Hematol Rep. 2025-8-5
Radiology. 2025-6
Nat Biotechnol. 2016-5
J Natl Compr Canc Netw. 2016-2
Blood. 2015-11-26