Suppr超能文献

高性能形状可设计的热电器件涂料。

High-performance shape-engineerable thermoelectric painting.

机构信息

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

出版信息

Nat Commun. 2016 Nov 11;7:13403. doi: 10.1038/ncomms13403.

Abstract

Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared BiTe-based inorganic paints using the molecular SbTe chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm. This approach paves the way to designing materials and devices that can be easily transferred to other applications.

摘要

热电发电机的输出功率取决于最大限度地减少热损失的器件工程以及固有材料特性。然而,由于器件的平面或角形形状有限,器件工程在很大程度上被忽视了。考虑到这些平面器件所附着的大多数热源的表面是弯曲的,不可避免地会有相当多的热量损失。为了解决这个问题,我们在这里提出了形状可设计的热电涂料,它与任何形状的表面都是几何兼容的。我们使用分子 SbTe 硫属化物金属盐作为热电颗粒的烧结助剂,制备了基于 BiTe 的无机涂料,n 型的 ZT 值为 0.67,p 型的为 1.21,与块状材料相媲美。直接刷涂在曲面上的器件产生了 4.0 mW cm 的高输出功率。这种方法为设计可以很容易转移到其他应用的材料和器件铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d836/5114615/197898de0db4/ncomms13403-f1.jpg

相似文献

1
High-performance shape-engineerable thermoelectric painting.
Nat Commun. 2016 Nov 11;7:13403. doi: 10.1038/ncomms13403.
2
Thin-film thermoelectric devices with high room-temperature figures of merit.
Nature. 2001 Oct 11;413(6856):597-602. doi: 10.1038/35098012.
3
High-Performance n-Type Carbon Nanotubes Doped by Oxidation of Neighboring SbTe for a Flexible Thermoelectric Generator.
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43778-43784. doi: 10.1021/acsami.0c12766. Epub 2020 Sep 15.
4
Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces.
Nano Lett. 2020 Jun 10;20(6):4445-4453. doi: 10.1021/acs.nanolett.0c01225. Epub 2020 May 7.
5
High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
Rev Sci Instrum. 2014 Apr;85(4):045107. doi: 10.1063/1.4870278.
6
Printed Flexible μ-Thermoelectric Device Based on Hybrid BiTe/PVA Composites.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8969-8981. doi: 10.1021/acsami.8b18081. Epub 2019 Feb 25.
7
High-Performance μ-Thermoelectric Device Based on BiTe/SbTe p-n Junctions.
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38946-38954. doi: 10.1021/acsami.9b13254. Epub 2019 Oct 9.
8
Thermoelectric Performance of SbTe-Based Alloys is Improved by Introducing PN Junctions.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23277-23284. doi: 10.1021/acsami.8b01719. Epub 2018 Jun 27.
9
Comfortable wearable thermoelectric generator with high output power.
Nat Commun. 2024 Oct 2;15(1):8516. doi: 10.1038/s41467-024-52841-1.
10
A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb2Te3 Nanostructures with Enhanced Thermoelectric Performance.
ACS Appl Mater Interfaces. 2015 Jul 8;7(26):14263-71. doi: 10.1021/acsami.5b02504. Epub 2015 Jun 23.

引用本文的文献

1
Magnesium-based thermoelectric materials and modules for low-temperature applications (below 300°C).
MRS Bull. 2025;50(8):956-965. doi: 10.1557/s43577-025-00939-2. Epub 2025 Jun 30.
2
The Potential of Tellurene-Like Nanosheets as a Solution-Processed Room-Temperature Thermoelectric Material.
Small Sci. 2024 Mar 31;5(3):2300272. doi: 10.1002/smsc.202300272. eCollection 2025 Mar.
3
The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications.
Int J Mol Sci. 2024 Jun 3;25(11):6152. doi: 10.3390/ijms25116152.
4
Developing High-Performance and Low-Cost Paint Thermoelectric Materials for Low-Midtemperature Applications.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12661-12671. doi: 10.1021/acsami.3c19309. Epub 2024 Mar 1.
8
Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe.
Nat Commun. 2022 Jul 7;13(1):3909. doi: 10.1038/s41467-022-31372-7.
9
10
Recent advances in printable thermoelectric devices: materials, printing techniques, and applications.
RSC Adv. 2020 Feb 26;10(14):8421-8434. doi: 10.1039/c9ra09801a. eCollection 2020 Feb 24.

本文引用的文献

2
Cosolvent approach for solution-processable electronic thin films.
ACS Nano. 2015 Apr 28;9(4):4398-405. doi: 10.1021/acsnano.5b00886. Epub 2015 Apr 13.
4
Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
ChemSusChem. 2015 Jul 20;8(14):2312-26. doi: 10.1002/cssc.201403485. Epub 2015 Mar 17.
5
Materials chemistry. Composition-matched molecular "solders" for semiconductors.
Science. 2015 Jan 23;347(6220):425-8. doi: 10.1126/science.1260501. Epub 2015 Jan 1.
6
Fabrication of flexible thermoelectric thin film devices by inkjet printing.
Small. 2014 Sep 10;10(17):3551-4. doi: 10.1002/smll.201303126.
7
All-inorganic nanocrystals as a glue for BiSbTe grains: design of interfaces in mesostructured thermoelectric materials.
Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7466-70. doi: 10.1002/anie.201402026. Epub 2014 May 22.
8
Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture.
J Am Chem Soc. 2013 Oct 23;135(42):15722-5. doi: 10.1021/ja4084336. Epub 2013 Oct 15.
10
Promising thermoelectric properties of commercial PEDOT:PSS materials and their bi2Te3 powder composites.
ACS Appl Mater Interfaces. 2010 Nov;2(11):3170-8. doi: 10.1021/am100654p. Epub 2010 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验