Cham Heining, Reshetnyak Evgeniya, Rosenfeld Barry, Breitbart William
a Fordham University.
b Memorial Sloan-Kettering Cancer Center.
Multivariate Behav Res. 2017 Jan-Feb;52(1):12-30. doi: 10.1080/00273171.2016.1245600. Epub 2016 Nov 11.
Researchers have developed missing data handling techniques for estimating interaction effects in multiple regression. Extending to latent variable interactions, we investigated full information maximum likelihood (FIML) estimation to handle incompletely observed indicators for product indicator (PI) and latent moderated structural equations (LMS) methods. Drawing on the analytic work on missing data handling techniques in multiple regression with interaction effects, we compared the performance of FIML for PI and LMS analytically. We performed a simulation study to compare FIML for PI and LMS. We recommend using FIML for LMS when the indicators are missing completely at random (MCAR) or missing at random (MAR) and when they are normally distributed. FIML for LMS produces unbiased parameter estimates with small variances, correct Type I error rates, and high statistical power of interaction effects. We illustrated the use of these methods by analyzing the interaction effect between advanced cancer patients' depression and change of inner peace well-being on future hopelessness levels.
研究人员已经开发出用于估计多元回归中交互效应的缺失数据处理技术。扩展到潜在变量交互作用,我们研究了全信息极大似然估计(FIML),以处理乘积指标(PI)和潜在调节结构方程(LMS)方法中观测不完全的指标。借鉴多元回归中具有交互效应的缺失数据处理技术的分析工作,我们通过分析比较了PI和LMS的FIML性能。我们进行了一项模拟研究,以比较PI和LMS的FIML。我们建议,当指标完全随机缺失(MCAR)或随机缺失(MAR)且呈正态分布时,对LMS使用FIML。LMS的FIML能产生具有小方差的无偏参数估计、正确的I型错误率以及交互效应的高统计功效。我们通过分析晚期癌症患者的抑郁与内心平静幸福感的变化对未来绝望水平的交互效应,说明了这些方法的使用。