Suppr超能文献

运用多层次结构方程模型和全信息极大似然估计技术处理缺失数据

Handling Missing Data With Multilevel Structural Equation Modeling and Full Information Maximum Likelihood Techniques.

作者信息

Schminkey Donna L, von Oertzen Timo, Bullock Linda

机构信息

Assistant Professor and Roberts Scholar, School of Nursing, University of Virginia, 202 Jeanette Lancaster Way PO Box 800782, Charlottesville, VA, 22903.

Assistant Professor, College of Arts and Sciences, University of Virginia, Charlottesville, VA.

出版信息

Res Nurs Health. 2016 Aug;39(4):286-97. doi: 10.1002/nur.21724. Epub 2016 May 13.

Abstract

With increasing access to population-based data and electronic health records for secondary analysis, missing data are common. In the social and behavioral sciences, missing data frequently are handled with multiple imputation methods or full information maximum likelihood (FIML) techniques, but healthcare researchers have not embraced these methodologies to the same extent and more often use either traditional imputation techniques or complete case analysis, which can compromise power and introduce unintended bias. This article is a review of options for handling missing data, concluding with a case study demonstrating the utility of multilevel structural equation modeling using full information maximum likelihood (MSEM with FIML) to handle large amounts of missing data. MSEM with FIML is a parsimonious and hypothesis-driven strategy to cope with large amounts of missing data without compromising power or introducing bias. This technique is relevant for nurse researchers faced with ever-increasing amounts of electronic data and decreasing research budgets. © 2016 Wiley Periodicals, Inc.

摘要

随着用于二次分析的基于人群的数据和电子健康记录越来越容易获取,缺失数据很常见。在社会和行为科学中,缺失数据通常采用多重插补方法或全信息极大似然法(FIML)技术来处理,但医疗保健研究人员并未在同等程度上采用这些方法,而是更多地使用传统插补技术或完全病例分析,这可能会削弱功效并引入意想不到的偏差。本文回顾了处理缺失数据的各种选项,最后通过一个案例研究展示了使用全信息极大似然法的多层结构方程模型(FIML的MSEM)处理大量缺失数据的效用。FIML的MSEM是一种简洁且基于假设的策略,可用于处理大量缺失数据,而不会削弱功效或引入偏差。这项技术对于面临电子数据量不断增加和研究预算减少的护士研究人员来说很有意义。© 2016威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验