Enders Craig K, Baraldi Amanda N, Cham Heining
Department of Psychology, Arizona State University.
Psychol Methods. 2014 Mar;19(1):39-55. doi: 10.1037/a0035314.
The existing missing data literature does not provide a clear prescription for estimating interaction effects with missing data, particularly when the interaction involves a pair of continuous variables. In this article, we describe maximum likelihood and multiple imputation procedures for this common analysis problem. We outline 3 latent variable model specifications for interaction analyses with missing data. These models apply procedures from the latent variable interaction literature to analyses with a single indicator per construct (e.g., a regression analysis with scale scores). We also discuss multiple imputation for interaction effects, emphasizing an approach that applies standard imputation procedures to the product of 2 raw score predictors. We thoroughly describe the process of probing interaction effects with maximum likelihood and multiple imputation. For both missing data handling techniques, we outline centering and transformation strategies that researchers can implement in popular software packages, and we use a series of real data analyses to illustrate these methods. Finally, we use computer simulations to evaluate the performance of the proposed techniques.
现有的缺失数据文献并未提供关于估计存在缺失数据时交互效应的明确方法,特别是当交互涉及一对连续变量时。在本文中,我们描述了针对这个常见分析问题的最大似然法和多重插补程序。我们概述了用于存在缺失数据时交互分析的3种潜在变量模型规范。这些模型将潜在变量交互文献中的程序应用于每个构念只有一个指标的分析(例如,使用量表得分的回归分析)。我们还讨论了交互效应的多重插补,重点介绍了一种将标准插补程序应用于两个原始得分预测变量乘积的方法。我们详细描述了使用最大似然法和多重插补来探究交互效应的过程。对于这两种缺失数据处理技术,我们概述了研究人员可以在常用软件包中实施的中心化和转换策略,并使用一系列实际数据分析来说明这些方法。最后,我们使用计算机模拟来评估所提出技术的性能。