Suppr超能文献

附肢再生过程中胚基细胞贡献的实时监测

Live Monitoring of Blastemal Cell Contributions during Appendage Regeneration.

作者信息

Tornini Valerie A, Puliafito Alberto, Slota Leslie A, Thompson John D, Nachtrab Gregory, Kaushik Anna-Lila, Kapsimali Marika, Primo Luca, Di Talia Stefano, Poss Kenneth D

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin 10060, Italy.

出版信息

Curr Biol. 2016 Nov 21;26(22):2981-2991. doi: 10.1016/j.cub.2016.08.072. Epub 2016 Nov 10.

Abstract

The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebrafish undergoing fin regeneration. Amputation stimulates resident cells within a limited recruitment zone to reset proximodistal (PD) positional information and assemble the blastema. Within the newly formed blastema, the spatial coordinates of connective tissue progenitors are predictive of their ultimate contributions to regenerated skeletal structures, indicating early development of an approximate PD pre-pattern. Calcineurin regulates size recovery by controlling the average number of progeny divisions without disrupting this pre-pattern. Our longitudinal clonal analyses of regenerating zebrafish fins provide evidence that connective tissue progenitors are rapidly organized into a scalable blueprint of lost structures.

摘要

芽基是一群祖细胞,能够使蝾螈肢体或鱼鳍再生。标记和追踪芽基细胞后代的方法一直存在缺陷,限制了我们对附肢再生的理解。在此,我们创建了一个系统,用于对数百个芽基细胞及其在成年斑马鱼鳍再生过程中的各自后代进行克隆分析和定量成像。截肢刺激有限募集区内的驻留细胞重置近远轴(PD)位置信息并组装芽基。在新形成的芽基中,结缔组织祖细胞的空间坐标可预测它们对再生骨骼结构的最终贡献,这表明早期已形成近似的PD预模式。钙调神经磷酸酶通过控制后代分裂的平均数量来调节大小恢复,而不会破坏这种预模式。我们对斑马鱼鳍再生的纵向克隆分析提供了证据,表明结缔组织祖细胞迅速组织成丢失结构的可扩展蓝图。

相似文献

1
Live Monitoring of Blastemal Cell Contributions during Appendage Regeneration.
Curr Biol. 2016 Nov 21;26(22):2981-2991. doi: 10.1016/j.cub.2016.08.072. Epub 2016 Nov 10.
3
Calcineurin controls proximodistal blastema polarity in zebrafish fin regeneration.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2009539118.
4
Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration.
Dev Biol. 2012 May 15;365(2):339-49. doi: 10.1016/j.ydbio.2012.02.031. Epub 2012 Mar 3.
5
6
Transcriptional components of anteroposterior positional information during zebrafish fin regeneration.
Development. 2013 Sep;140(18):3754-64. doi: 10.1242/dev.098798. Epub 2013 Aug 7.
9
Regrowth of zebrafish caudal fin regeneration is determined by the amputated length.
Sci Rep. 2020 Jan 20;10(1):649. doi: 10.1038/s41598-020-57533-6.
10
Recent advancements in understanding fin regeneration in zebrafish.
Wiley Interdiscip Rev Dev Biol. 2020 Jan;9(1):e367. doi: 10.1002/wdev.367. Epub 2019 Nov 14.

引用本文的文献

1
Decaying and expanding Erk gradients process memory of skeletal size during zebrafish fin regeneration.
bioRxiv. 2025 Jan 23:2025.01.23.634576. doi: 10.1101/2025.01.23.634576.
5
A screen for regeneration-associated silencer regulatory elements in zebrafish.
Dev Cell. 2024 Mar 11;59(5):676-691.e5. doi: 10.1016/j.devcel.2024.01.004. Epub 2024 Jan 29.
7
Thyroid hormone regulates proximodistal patterning in fin rays.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2219770120. doi: 10.1073/pnas.2219770120. Epub 2023 May 15.
8
Genetically engineered zebrafish as models of skeletal development and regeneration.
Bone. 2023 Feb;167:116611. doi: 10.1016/j.bone.2022.116611. Epub 2022 Nov 14.
9
Rebuilding limbs, one cell at a time.
Dev Dyn. 2022 Sep;251(9):1389-1403. doi: 10.1002/dvdy.463. Epub 2022 Mar 10.
10
Single-cell resolution of MET- and EMT-like programs in osteoblasts during zebrafish fin regeneration.
iScience. 2022 Jan 19;25(2):103784. doi: 10.1016/j.isci.2022.103784. eCollection 2022 Feb 18.

本文引用的文献

1
Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.
Development. 2016 Jun 1;143(11):2012-24. doi: 10.1242/dev.134817. Epub 2016 Apr 27.
2
Modulation of tissue repair by regeneration enhancer elements.
Nature. 2016 Apr 14;532(7598):201-6. doi: 10.1038/nature17644. Epub 2016 Apr 6.
3
Keeping at arm's length during regeneration.
Dev Cell. 2014 Apr 28;29(2):139-45. doi: 10.1016/j.devcel.2014.04.007.
4
Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins.
Dev Cell. 2014 Mar 10;28(5):573-87. doi: 10.1016/j.devcel.2014.01.019. Epub 2014 Feb 20.
5
Progressive specification rather than intercalation of segments during limb regeneration.
Science. 2013 Dec 13;342(6164):1375-9. doi: 10.1126/science.1241796.
6
Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
Cell Stem Cell. 2014 Feb 6;14(2):174-87. doi: 10.1016/j.stem.2013.11.007. Epub 2013 Nov 21.
7
Local Dkk1 crosstalk from breeding ornaments impedes regeneration of injured male zebrafish fins.
Dev Cell. 2013 Oct 14;27(1):19-31. doi: 10.1016/j.devcel.2013.08.015.
8
Limb regeneration.
Wiley Interdiscip Rev Dev Biol. 2013 Mar-Apr;2(2):291-300. doi: 10.1002/wdev.73. Epub 2012 May 29.
9
The zebrafish as a model for complex tissue regeneration.
Trends Genet. 2013 Nov;29(11):611-20. doi: 10.1016/j.tig.2013.07.003. Epub 2013 Aug 6.
10
Transcriptional components of anteroposterior positional information during zebrafish fin regeneration.
Development. 2013 Sep;140(18):3754-64. doi: 10.1242/dev.098798. Epub 2013 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验