Youn Chun Song, Callaway Clifton W, Rittenberger Jon C
Department of Emergency Medicine, The Catholic University of Korea, Republic of Korea.
Department of Emergency Medicine, University of Pittsburgh School of Medicine, United States.
Resuscitation. 2017 Jan;110:120-125. doi: 10.1016/j.resuscitation.2016.10.024. Epub 2016 Nov 10.
Prognosticating outcome following cardiac arrest is challenging and requires a multimodal approach. We tested the hypothesis that the combination of initial neurologic examination, quantitative analysis of head computed tomography (CT) and continuous EEG (cEEG) improve outcome prediction after cardiac arrest.
Review of consecutive patients receiving head CT within 24h and cEEG monitoring between April 2010 and May 2013. Initial neurologic examination (Full Outline of UnResponsiveness_Brainstem reflexes (FOUR_B) score and initial Pittsburgh Post-Cardiac Arrest Category (PCAC)), gray matter to white matter attenuation ratio (GWR) on head CT and cEEG patterns were evaluated. The primary outcome was in-hospital mortality.
Of 240 subjects, 70 (29%) survived and 22 (9%) had a good neurologic outcome at hospital discharge. Combined determination of GW ratio and malignant cEEG had an incremental predictive value (AUC: 0.776 for mortality and 0.792 for poor neurologic outcome), with 0% false positive rate when compared with either test alone (AUC of GW ratio: 0.683 for mortality and 0.726 for poor outcome, AUC of malignant cEEG: 0.650 for mortality and 0.647 for poor outcome). Addition of FOUR_B or PCAC to this model improved prediction of mortality (p=0.014 for FOUR_B and 0.001 for PCAC) but not of poor outcome (p=0.786 for FOUR_B and 0.099 for PCAC).
Combining GWR with cEEG was superior to any individual test for predicting mortality and neurologic outcome. Addition of clinical variables further improved prognostication for mortality but not neurologic outcome. These preliminary data support a multi-modal prognostic workup in this population.
预测心脏骤停后的预后具有挑战性,需要采用多模式方法。我们检验了以下假设:初始神经学检查、头部计算机断层扫描(CT)定量分析和连续脑电图(cEEG)相结合可改善心脏骤停后的预后预测。
回顾2010年4月至2013年5月期间在24小时内接受头部CT检查并进行cEEG监测的连续患者。评估初始神经学检查(无反应性脑干反射全面概述(FOUR_B)评分和初始匹兹堡心脏骤停后分类(PCAC))、头部CT上的灰质与白质衰减率(GWR)以及cEEG模式。主要结局是院内死亡率。
在240名受试者中,70名(29%)存活,22名(9%)在出院时具有良好的神经学结局。GW比率和恶性cEEG的联合测定具有增量预测价值(死亡率的AUC为0.776,神经学预后不良的AUC为0.792),与单独的任何一项检查相比,假阳性率为0%(GW比率的死亡率AUC为0.683,预后不良的AUC为0.726,恶性cEEG的死亡率AUC为0.650,预后不良的AUC为0.647)。将FOUR_B或PCAC添加到该模型中可改善死亡率预测(FOUR_B为p = 0.014,PCAC为p = 0.001),但不能改善预后不良的预测(FOUR_B为p = 0.786,PCAC为p = 0.099)。
将GWR与cEEG相结合在预测死亡率和神经学结局方面优于任何单项检查。添加临床变量可进一步改善死亡率的预后评估,但不能改善神经学结局的评估。这些初步数据支持对该人群进行多模式预后检查。