Suppr超能文献

神经生理和神经影像学多模态方法预测心脏骤停后早期不良预后。

Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest.

机构信息

SODc Neurofisiopatologia, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, AOU Careggi, Florence, Italy; IRCCS, Fondazione Don Carlo Gnocchi, Florence, Italy.

SODc Neurofisiopatologia, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, AOU Careggi, Florence, Italy.

出版信息

Resuscitation. 2018 Aug;129:114-120. doi: 10.1016/j.resuscitation.2018.04.016. Epub 2018 Apr 18.

Abstract

INTRODUCTION

Prognosticating outcome after cardiac arrest(CA) requires a multimodal approach. However, evidence regarding combinations of methods is limited. We evaluated whether the combination of electroencephalography(EEG), somatosensory evoked potentials(SEPs) and brain computed tomography(CT) could predict poor outcome.

METHODS

We screened our database regarding patients successfully resuscitated after CA, for whom EEG, SEPs and brain CT were available within 24 h. EEG patterns were classified according to American Clinical Neurophysiological Society terminology; SEPs were graded accounting for the cortical responses of each hemisphere; and the grey matter/white matter(GM/WM) ratio was evaluated by brain CT. EEG patterns, SEP findings and GM/WM ratio (with a specificity of 100%) were, individually and in combination, related to poor outcome (death/unresponsive wakefulness state) at 6-month follow-up, using the cerebral performance categories(CPC).

RESULTS

EEG, SEPs and brain CT were available in 183/273(67%) patients. Bilateral absent/absent-pathologic(AA/AP) cortical SEPs predicted a poor outcome with a sensitivity of 58.5%. A GM/WM ratio <1.21 predicted a poor outcome with a sensitivity of 50.4%. Isoelectric/burst-suppression EEG patterns predicted a poor outcome with a sensitivity of 43%. If at least one of these poor prognostic patterns was present, sensitivity for an ominous outcome increased to 71.5%. If, in the same subject, two poor prognostic patterns were simultaneously present, sensitivity was 48%. If all three poor prognostic patterns were present, sensitivity decreased by up to 23%.

CONCLUSION

In this population, in which life-sustaining treatments were never suspended, the combination of EEG, SEPs and brain CT improved the sensitivity, maintaining the specificity of poor outcome prediction.

摘要

简介

预测心脏骤停(CA)后的预后需要采用多模态方法。然而,关于方法组合的证据有限。我们评估了脑电图(EEG)、体感诱发电位(SEP)和脑计算机断层扫描(CT)的组合是否可以预测不良预后。

方法

我们筛选了我们的数据库中成功复苏后的 CA 患者,这些患者在 24 小时内可获得 EEG、SEP 和脑 CT。EEG 模式根据美国临床神经生理学会的术语进行分类;SEP 根据每个半球的皮质反应进行分级;脑 CT 评估灰质/白质(GM/WM)比值。EEG 模式、SEP 发现和 GM/WM 比值(特异性为 100%)分别和组合与 6 个月随访时的不良预后(死亡/无意识觉醒状态)相关,采用脑功能分类(CPC)。

结果

183/273(67%)患者可获得 EEG、SEP 和脑 CT。双侧缺失/病理性(AA/AP)皮质 SEP 预测不良预后的敏感性为 58.5%。GM/WM 比值<1.21 预测不良预后的敏感性为 50.4%。等电/爆发抑制 EEG 模式预测不良预后的敏感性为 43%。如果至少存在一种预后不良的模式,预示不良预后的敏感性增加到 71.5%。如果同一患者同时存在两种预后不良的模式,敏感性为 48%。如果存在三种预后不良的模式,敏感性可降低 23%。

结论

在这个生命支持治疗从未暂停的人群中,EEG、SEP 和脑 CT 的组合提高了敏感性,同时保持了不良预后预测的特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验